Phoenix21 commited on
Commit
f3bca8e
·
1 Parent(s): 4ec0915

improved app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -6
app.py CHANGED
@@ -13,6 +13,7 @@ import chardet
13
  import gradio as gr
14
  import pandas as pd
15
  import json
 
16
 
17
  # Enable logging for debugging
18
  logging.basicConfig(level=logging.DEBUG)
@@ -70,13 +71,27 @@ def load_documents(file_paths):
70
  logger.error(f"Error processing file {file_path}: {e}")
71
  return docs
72
 
 
 
 
 
 
 
 
 
73
  # Initialize the LLM using ChatGroq with GROQ's API
74
  def initialize_llm(model, temperature, max_tokens):
75
  try:
 
 
 
 
 
 
76
  llm = ChatGroq(
77
  model=model,
78
  temperature=temperature,
79
- max_tokens=max_tokens,
80
  api_key=api_key # Ensure the API key is passed correctly
81
  )
82
  logger.debug("LLM initialized successfully.")
@@ -114,7 +129,7 @@ def create_rag_pipeline(file_paths, model, temperature, max_tokens):
114
  custom_prompt_template = PromptTemplate(
115
  input_variables=["context", "question"],
116
  template="""
117
- You are an AI assistant with expertise in daily wellness and your aim is to give detailed solutions regarding it.
118
 
119
  Context:
120
  {context}
@@ -122,7 +137,7 @@ def create_rag_pipeline(file_paths, model, temperature, max_tokens):
122
  Question:
123
  {question}
124
 
125
- Provide a detailed answer, including relevant examples and a suggested schedule.
126
  """
127
  )
128
 
@@ -138,7 +153,7 @@ def create_rag_pipeline(file_paths, model, temperature, max_tokens):
138
  logger.error(f"Error creating RAG pipeline: {e}")
139
  return None, f"Error creating RAG pipeline: {e}"
140
 
141
- # Function to answer questions
142
  def answer_question(file_paths, model, temperature, max_tokens, question):
143
  rag_chain, message = create_rag_pipeline(file_paths, model, temperature, max_tokens)
144
  if rag_chain is None:
@@ -146,7 +161,9 @@ def answer_question(file_paths, model, temperature, max_tokens, question):
146
  try:
147
  answer = rag_chain.run(question)
148
  logger.debug("Question answered successfully.")
149
- return answer
 
 
150
  except Exception as e:
151
  logger.error(f"Error during RAG pipeline execution: {e}")
152
  return f"Error during RAG pipeline execution: {e}"
@@ -162,7 +179,7 @@ interface = gr.Interface(
162
  inputs=[
163
  gr.Textbox(label="Model Name", value="llama3-8b-8192"),
164
  gr.Slider(label="Temperature", minimum=0, maximum=1, step=0.01, value=0.7),
165
- gr.Slider(label="Max Tokens", minimum=1, maximum=1024, step=1, value=500),
166
  gr.Textbox(label="Question")
167
  ],
168
  outputs="text",
 
13
  import gradio as gr
14
  import pandas as pd
15
  import json
16
+ import re
17
 
18
  # Enable logging for debugging
19
  logging.basicConfig(level=logging.DEBUG)
 
71
  logger.error(f"Error processing file {file_path}: {e}")
72
  return docs
73
 
74
+ # Function to ensure the response ends with a complete sentence
75
+ def ensure_complete_sentences(text):
76
+ # Use regex to find all complete sentences
77
+ sentences = re.findall(r'[^.!?]*[.!?]', text)
78
+ if sentences:
79
+ return sentences[-1].strip()
80
+ return text # Return as is if no complete sentence is found
81
+
82
  # Initialize the LLM using ChatGroq with GROQ's API
83
  def initialize_llm(model, temperature, max_tokens):
84
  try:
85
+ # Allocate some tokens for the prompt (e.g., 50 tokens)
86
+ prompt_tokens = 50
87
+ response_max_tokens = max_tokens - prompt_tokens
88
+ if response_max_tokens <= 0:
89
+ raise ValueError("max_tokens is too small to allocate for the response.")
90
+
91
  llm = ChatGroq(
92
  model=model,
93
  temperature=temperature,
94
+ max_tokens=response_max_tokens, # Adjusted max_tokens
95
  api_key=api_key # Ensure the API key is passed correctly
96
  )
97
  logger.debug("LLM initialized successfully.")
 
129
  custom_prompt_template = PromptTemplate(
130
  input_variables=["context", "question"],
131
  template="""
132
+ You are an AI assistant with expertise in daily wellness. Your aim is to provide detailed yet concise solutions regarding daily wellness topics.
133
 
134
  Context:
135
  {context}
 
137
  Question:
138
  {question}
139
 
140
+ Provide a detailed but concise answer, ensuring that it is complete and does not end abruptly. Include relevant examples and a suggested schedule.
141
  """
142
  )
143
 
 
153
  logger.error(f"Error creating RAG pipeline: {e}")
154
  return None, f"Error creating RAG pipeline: {e}"
155
 
156
+ # Function to answer questions with post-processing
157
  def answer_question(file_paths, model, temperature, max_tokens, question):
158
  rag_chain, message = create_rag_pipeline(file_paths, model, temperature, max_tokens)
159
  if rag_chain is None:
 
161
  try:
162
  answer = rag_chain.run(question)
163
  logger.debug("Question answered successfully.")
164
+ # Post-process to ensure the answer ends with a complete sentence
165
+ complete_answer = ensure_complete_sentences(answer)
166
+ return complete_answer
167
  except Exception as e:
168
  logger.error(f"Error during RAG pipeline execution: {e}")
169
  return f"Error during RAG pipeline execution: {e}"
 
179
  inputs=[
180
  gr.Textbox(label="Model Name", value="llama3-8b-8192"),
181
  gr.Slider(label="Temperature", minimum=0, maximum=1, step=0.01, value=0.7),
182
+ gr.Slider(label="Max Tokens", minimum=100, maximum=1024, step=1, value=500),
183
  gr.Textbox(label="Question")
184
  ],
185
  outputs="text",