Update pipeline.py
Browse files- pipeline.py +10 -11
pipeline.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
# pipeline.py
|
2 |
-
|
3 |
import os
|
4 |
import getpass
|
5 |
import pandas as pd
|
@@ -139,12 +137,12 @@ def run_with_chain_context(inputs: Dict[str, Any]) -> Dict[str, str]:
|
|
139 |
chat_history = inputs.get("chat_history", [])
|
140 |
|
141 |
# 1) Classification
|
142 |
-
class_result = classification_chain.invoke({"query": user_query})
|
143 |
classification = class_result.get("text", "").strip()
|
144 |
|
145 |
if classification == "OutOfScope":
|
146 |
-
refusal_text = refusal_chain.run({})
|
147 |
-
final_refusal = tailor_chain.run({"response": refusal_text})
|
148 |
return {"answer": final_refusal.strip()}
|
149 |
|
150 |
if classification == "Wellness":
|
@@ -154,8 +152,8 @@ def run_with_chain_context(inputs: Dict[str, Any]) -> Dict[str, str]:
|
|
154 |
})
|
155 |
csv_answer = rag_result["result"].strip()
|
156 |
web_answer = do_web_search(user_query) if not csv_answer else ""
|
157 |
-
final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer)
|
158 |
-
final_answer = tailor_chain.run({"response": final_merged}).strip()
|
159 |
return {"answer": final_answer}
|
160 |
|
161 |
if classification == "Brand":
|
@@ -164,13 +162,14 @@ def run_with_chain_context(inputs: Dict[str, Any]) -> Dict[str, str]:
|
|
164 |
"chat_history": chat_history # Pass history here
|
165 |
})
|
166 |
csv_answer = rag_result["result"].strip()
|
167 |
-
final_merged = cleaner_chain.merge(kb=csv_answer, web="")
|
168 |
-
final_answer = tailor_chain.run({"response": final_merged}).strip()
|
169 |
return {"answer": final_answer}
|
170 |
|
171 |
-
refusal_text = refusal_chain.run({})
|
172 |
-
final_refusal = tailor_chain.run({"response": refusal_text}).strip()
|
173 |
return {"answer": final_refusal}
|
|
|
174 |
###############################################################################
|
175 |
# 7) Build a "Runnable" wrapper so .with_listeners() works
|
176 |
###############################################################################
|
|
|
|
|
|
|
1 |
import os
|
2 |
import getpass
|
3 |
import pandas as pd
|
|
|
137 |
chat_history = inputs.get("chat_history", [])
|
138 |
|
139 |
# 1) Classification
|
140 |
+
class_result = classification_chain.invoke({"query": user_query, "chat_history": chat_history})
|
141 |
classification = class_result.get("text", "").strip()
|
142 |
|
143 |
if classification == "OutOfScope":
|
144 |
+
refusal_text = refusal_chain.run({"chat_history": chat_history})
|
145 |
+
final_refusal = tailor_chain.run({"response": refusal_text, "chat_history": chat_history})
|
146 |
return {"answer": final_refusal.strip()}
|
147 |
|
148 |
if classification == "Wellness":
|
|
|
152 |
})
|
153 |
csv_answer = rag_result["result"].strip()
|
154 |
web_answer = do_web_search(user_query) if not csv_answer else ""
|
155 |
+
final_merged = cleaner_chain.merge(kb=csv_answer, web=web_answer, chat_history=chat_history)
|
156 |
+
final_answer = tailor_chain.run({"response": final_merged, "chat_history": chat_history}).strip()
|
157 |
return {"answer": final_answer}
|
158 |
|
159 |
if classification == "Brand":
|
|
|
162 |
"chat_history": chat_history # Pass history here
|
163 |
})
|
164 |
csv_answer = rag_result["result"].strip()
|
165 |
+
final_merged = cleaner_chain.merge(kb=csv_answer, web="", chat_history=chat_history)
|
166 |
+
final_answer = tailor_chain.run({"response": final_merged, "chat_history": chat_history}).strip()
|
167 |
return {"answer": final_answer}
|
168 |
|
169 |
+
refusal_text = refusal_chain.run({"chat_history": chat_history})
|
170 |
+
final_refusal = tailor_chain.run({"response": refusal_text, "chat_history": chat_history}).strip()
|
171 |
return {"answer": final_refusal}
|
172 |
+
|
173 |
###############################################################################
|
174 |
# 7) Build a "Runnable" wrapper so .with_listeners() works
|
175 |
###############################################################################
|