ChatBotAgenticRAG / pipeline.py
Phoenix21's picture
Update pipeline.py
76f6ca7 verified
import os
import getpass
import spacy
import pandas as pd
from typing import Optional
import subprocess
from langchain.llms.base import LLM
from langchain.docstore.document import Document
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from smolagents import CodeAgent, DuckDuckGoSearchTool, ManagedAgent, LiteLLMModel
from pydantic import BaseModel, ValidationError, validator
from mistralai import Mistral
from langchain.prompts import PromptTemplate
from langchain_google_genai import ChatGoogleGenerativeAI
# Import chains and tools
from classification_chain import get_classification_chain
from cleaner_chain import get_cleaner_chain
from refusal_chain import get_refusal_chain
from tailor_chain import get_tailor_chain
from prompts import classification_prompt, refusal_prompt, tailor_prompt
# Initialize Mistral API client
mistral_api_key = os.environ.get("MISTRAL_API_KEY")
client = Mistral(api_key=mistral_api_key)
gemini_llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro",
temperature=0.5,
max_retries=2,
google_api_key=os.environ.get("GEMINI_API_KEY"),
# Additional parameters or safety_settings can be added here if needed
)
# Load spaCy model for NER and download it if not already installed
def install_spacy_model():
try:
spacy.load("en_core_web_sm")
print("spaCy model 'en_core_web_sm' is already installed.")
except OSError:
print("Downloading spaCy model 'en_core_web_sm'...")
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
print("spaCy model 'en_core_web_sm' downloaded successfully.")
install_spacy_model()
nlp = spacy.load("en_core_web_sm")
# Function to extract the main topic from the query using spaCy NER
def extract_main_topic(query: str) -> str:
doc = nlp(query)
main_topic = None
for ent in doc.ents:
if ent.label_ in ["ORG", "PRODUCT", "PERSON", "GPE", "TIME"]:
main_topic = ent.text
break
if not main_topic:
for token in doc:
if token.pos_ in ["NOUN", "PROPN"]:
main_topic = token.text
break
return main_topic if main_topic else "this topic"
# Pydantic model to handle string input validation
class QueryInput(BaseModel):
query: str
# Validator to ensure the query is always a string
@validator('query')
def check_query_is_string(cls, v):
if not isinstance(v, str):
raise ValueError("Query must be a valid string.")
return v
# Function to classify query based on wellness topics
def classify_query(query: str) -> str:
wellness_keywords = ["box breathing", "meditation", "yoga", "mindfulness", "breathing exercises"]
if any(keyword in query.lower() for keyword in wellness_keywords):
return "Wellness"
# Fallback to classification chain if not directly recognized
class_result = classification_chain.invoke({"query": query})
classification = class_result.get("text", "").strip()
return classification if classification != "OutOfScope" else "OutOfScope"
# Function to moderate text using Mistral moderation API (sync version)
def moderate_text(query: str) -> str:
try:
# Use Pydantic to validate text input
query_input = QueryInput(query=query) # This will validate that the query is a string
except ValidationError as e:
print(f"Error validating text: {e}")
return "Invalid text format."
# Call the Mistral moderation API
response = client.classifiers.moderate_chat(
model="mistral-moderation-latest",
inputs=[{"role": "user", "content": query}]
)
# Check if harmful categories are present in the response
if hasattr(response, 'results') and response.results:
categories = response.results[0].categories
if categories.get("violence_and_threats", False) or \
categories.get("hate_and_discrimination", False) or \
categories.get("dangerous_and_criminal_content", False) or \
categories.get("selfharm", False):
return "OutOfScope"
return query
# Function to build or load the vector store from CSV data
def build_or_load_vectorstore(csv_path: str, store_dir: str) -> FAISS:
if os.path.exists(store_dir):
print(f"DEBUG: Found existing FAISS store at '{store_dir}'. Loading...")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
vectorstore = FAISS.load_local(store_dir, embeddings)
return vectorstore
else:
print(f"DEBUG: Building new store from CSV: {csv_path}")
df = pd.read_csv(csv_path)
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
df.columns = df.columns.str.strip()
if "Answer" in df.columns:
df.rename(columns={"Answer": "Answers"}, inplace=True)
if "Question" not in df.columns and "Question " in df.columns:
df.rename(columns={"Question ": "Question"}, inplace=True)
if "Question" not in df.columns or "Answers" not in df.columns:
raise ValueError("CSV must have 'Question' and 'Answers' columns.")
docs = []
for _, row in df.iterrows():
q = str(row["Question"])
ans = str(row["Answers"])
doc = Document(page_content=ans, metadata={"question": q})
docs.append(doc)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
vectorstore = FAISS.from_documents(docs, embedding=embeddings)
vectorstore.save_local(store_dir)
return vectorstore
# Function to build RAG chain
def build_rag_chain(vectorstore: FAISS) -> RetrievalQA:
"""Build RAG chain using the Gemini LLM directly without a custom class."""
try:
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 3})
chain = RetrievalQA.from_chain_type(
llm=gemini_llm, # Directly use the ChatGoogleGenerativeAI instance
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
return chain
except Exception as e:
raise RuntimeError(f"Error building RAG chain: {str(e)}")
# Function to perform web search using DuckDuckGo
def do_web_search(query: str) -> str:
search_tool = DuckDuckGoSearchTool()
web_agent = CodeAgent(tools=[search_tool], model=pydantic_agent)
managed_web_agent = ManagedAgent(agent=web_agent, name="web_search", description="Runs web search for you.")
manager_agent = CodeAgent(tools=[], model=pydantic_agent, managed_agents=[managed_web_agent])
search_query = f"Give me relevant info: {query}"
response = manager_agent.run(search_query)
return response
# Function to combine web and knowledge base responses
def merge_responses(kb_answer: str, web_answer: str) -> str:
# Merge both answers with a cohesive response
final_answer = f"Knowledge Base Answer: {kb_answer}\n\nWeb Search Result: {web_answer}"
return final_answer.strip()
# Orchestrate the entire workflow
def run_pipeline(query: str) -> str:
# Moderate the query for harmful content
moderated_query = moderate_text(query)
if moderated_query == "OutOfScope":
return "Sorry, this query contains harmful or inappropriate content."
# Classify the query manually
classification = classify_query(moderated_query)
if classification == "OutOfScope":
refusal_text = refusal_chain.run({"topic": "this topic"})
final_refusal = tailor_chain.run({"response": refusal_text})
return final_refusal.strip()
if classification == "Wellness":
rag_result = wellness_rag_chain({"query": moderated_query})
csv_answer = rag_result["result"].strip()
web_answer = "" # Empty if we found an answer from the knowledge base
if not csv_answer:
web_answer = do_web_search(moderated_query)
final_merged = merge_responses(csv_answer, web_answer)
final_answer = tailor_chain.run({"response": final_merged})
return final_answer.strip()
if classification == "Brand":
rag_result = brand_rag_chain({"query": moderated_query})
csv_answer = rag_result["result"].strip()
final_merged = merge_responses(csv_answer, "")
final_answer = tailor_chain.run({"response": final_merged})
return final_answer.strip()
refusal_text = refusal_chain.run({"topic": "this topic"})
final_refusal = tailor_chain.run({"response": refusal_text})
return final_refusal.strip()
# Initialize chains
classification_chain = get_classification_chain()
refusal_chain = get_refusal_chain()
tailor_chain = get_tailor_chain()
cleaner_chain = get_cleaner_chain()
wellness_csv = "AIChatbot.csv"
brand_csv = "BrandAI.csv"
wellness_store_dir = "faiss_wellness_store"
brand_store_dir = "faiss_brand_store"
wellness_vectorstore = build_or_load_vectorstore(wellness_csv, wellness_store_dir)
brand_vectorstore = build_or_load_vectorstore(brand_csv, brand_store_dir)
# gemini_llm = LiteLLMModel(model_id="gemini/gemini-pro", api_key=os.environ.get("GEMINI_API_KEY"))
wellness_rag_chain = build_rag_chain( wellness_vectorstore)
brand_rag_chain = build_rag_chain( brand_vectorstore)
# Function to wrap up and run the chain
def run_with_chain(query: str) -> str:
return run_pipeline(query)