Spaces:
Sleeping
Sleeping
# chain_summary.py | |
import json | |
from typing import Dict | |
from langchain import PromptTemplate, LLMChain | |
from models import chat_model | |
final_prompt_template = PromptTemplate( | |
input_variables=["report", "problems", "recommendation"], | |
template=( | |
"Based on the following information:\n" | |
"Report:\n{report}\n\n" | |
"Problem Severity Percentages:\n{problems}\n\n" | |
"Recommended Packages:\n{recommendation}\n\n" | |
"Generate a short summary suitable for video narration that synthesizes this information." | |
) | |
) | |
final_chain = LLMChain(llm=chat_model, prompt=final_prompt_template) | |
def generate_final_summary(report: str, problems: Dict[str, float], recommendation: str) -> str: | |
summary = final_chain.run( | |
report=report, | |
problems=json.dumps(problems), | |
recommendation=recommendation | |
) | |
return summary.strip() | |
shorten_prompt_template = PromptTemplate( | |
input_variables=["final_summary"], | |
template=( | |
"Shorten the following summary to make it concise and engaging for video narration. " | |
"Ensure all key points remain intact:\n\n" | |
"{final_summary}\n\n" | |
"Shortened Summary:" | |
) | |
) | |
shorten_chain = LLMChain(llm=chat_model, prompt=shorten_prompt_template) | |
def shorten_summary(final_summary: str) -> str: | |
shortened = shorten_chain.run(final_summary=final_summary) | |
return shortened.strip() | |