|
|
|
|
|
import gradio as gr |
|
import cv2 |
|
import numpy |
|
import os |
|
import random |
|
from basicsr.archs.rrdbnet_arch import RRDBNet |
|
from basicsr.utils.download_util import load_file_from_url |
|
|
|
from realesrgan import RealESRGANer |
|
from realesrgan.archs.srvgg_arch import SRVGGNetCompact |
|
|
|
last_file = None |
|
img_mode = "RGBA" |
|
|
|
def realesrgan(img, model_name, face_enhance): |
|
|
|
if not img: |
|
return |
|
|
|
imgwidth, imgheight = img.size |
|
|
|
if imgwidth > 1000 or imgheight > 1000: |
|
return error("Input Image too big") |
|
|
|
|
|
if model_name == '4xNomos8kSC': |
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) |
|
netscale = 4 |
|
elif model_name == '4xHFA2k': |
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) |
|
netscale = 4 |
|
elif model_name == '4xLSDIR': |
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) |
|
netscale = 4 |
|
elif model_name == '4xLSDIRplusN': |
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) |
|
netscale = 4 |
|
elif model_name == '4xLSDIRplusC': |
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) |
|
netscale = 4 |
|
elif model_name == '4xLSDIRplusR': |
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) |
|
netscale = 4 |
|
elif model_name == '2xParimgCompact': |
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=2, act_type='prelu') |
|
netscale = 2 |
|
elif model_name == '2xHFA2kCompact': |
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=2, act_type='prelu') |
|
netscale = 2 |
|
elif model_name == '4xLSDIRCompactN': |
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu') |
|
netscale = 4 |
|
elif model_name == '4xLSDIRCompactC3': |
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu') |
|
netscale = 4 |
|
elif model_name == '4xLSDIRCompactR3': |
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu') |
|
netscale = 4 |
|
|
|
|
|
model_path = os.path.join('weights', model_name + '.pth') |
|
|
|
|
|
upsampler = RealESRGANer( |
|
scale=netscale, |
|
model_path=model_path, |
|
dni_weight=None, |
|
model=model, |
|
tile=0, |
|
tile_pad=10, |
|
pre_pad=10, |
|
half=False, |
|
gpu_id=None, |
|
) |
|
|
|
|
|
if face_enhance: |
|
from gfpgan import GFPGANer |
|
face_enhancer = GFPGANer( |
|
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth', |
|
upscale=netscale, |
|
arch='clean', |
|
channel_multiplier=2, |
|
bg_upsampler=upsampler) |
|
|
|
|
|
cv_img = numpy.array(img) |
|
img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA) |
|
|
|
|
|
try: |
|
if face_enhance: |
|
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) |
|
else: |
|
output, _ = upsampler.enhance(img, netscale) |
|
except RuntimeError as error: |
|
print('Error', error) |
|
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.') |
|
else: |
|
|
|
if img_mode == 'RGBA': |
|
extension = 'png' |
|
else: |
|
extension = 'jpg' |
|
|
|
out_filename = f"output_{rnd_string(16)}.{extension}" |
|
cv2.imwrite(out_filename, output) |
|
global last_file |
|
last_file = out_filename |
|
return out_filename |
|
|
|
|
|
def rnd_string(x): |
|
"""Returns a string of 'x' random characters |
|
""" |
|
characters = "abcdefghijklmnopqrstuvwxyz_0123456789" |
|
result = "".join((random.choice(characters)) for i in range(x)) |
|
return result |
|
|
|
|
|
def reset(): |
|
"""Resets the Image components of the Gradio interface and deletes |
|
the last processed image |
|
""" |
|
global last_file |
|
if last_file: |
|
print(f"Deleting {last_file} ...") |
|
os.remove(last_file) |
|
last_file = None |
|
return gr.update(value=None), gr.update(value=None) |
|
|
|
|
|
def has_transparency(img): |
|
"""This function works by first checking to see if a "transparency" property is defined |
|
in the image's info -- if so, we return "True". Then, if the image is using indexed colors |
|
(such as in GIFs), it gets the index of the transparent color in the palette |
|
(img.info.get("transparency", -1)) and checks if it's used anywhere in the canvas |
|
(img.getcolors()). If the image is in RGBA mode, then presumably it has transparency in |
|
it, but it double-checks by getting the minimum and maximum values of every color channel |
|
(img.getextrema()), and checks if the alpha channel's smallest value falls below 255. |
|
https://stackoverflow.com/questions/43864101/python-pil-check-if-image-is-transparent |
|
""" |
|
if img.info.get("transparency", None) is not None: |
|
return True |
|
if img.mode == "P": |
|
transparent = img.info.get("transparency", -1) |
|
for _, index in img.getcolors(): |
|
if index == transparent: |
|
return True |
|
elif img.mode == "RGBA": |
|
extrema = img.getextrema() |
|
if extrema[3][0] < 255: |
|
return True |
|
return False |
|
|
|
|
|
def image_properties(img): |
|
"""Returns the dimensions (width and height) and color mode of the input image and |
|
also sets the global img_mode variable to be used by the realesrgan function |
|
""" |
|
global img_mode |
|
if img: |
|
if has_transparency(img): |
|
img_mode = "RGBA" |
|
else: |
|
img_mode = "RGB" |
|
properties = f"Width: {img.size[0]}, Height: {img.size[1]} | Color Mode: {img_mode}" |
|
return properties |
|
|
|
|
|
def main(): |
|
|
|
with gr.Blocks(title="Self-trained ESRGAN models demo", theme="dark") as demo: |
|
|
|
gr.Markdown( |
|
"""# <div align="center"> Upscale image </div> |
|
Here I demo my self-trained models. The models with their corresponding infos can be found on [my github repo](https://github.com/phhofm/models). |
|
""" |
|
) |
|
|
|
with gr.Group(): |
|
with gr.Group(): |
|
model_name = gr.Dropdown(label="Model to be used", |
|
choices=["2xHFA2kCompact", "2xParimgCompact", "4xLSDIRCompactN", "4xLSDIRCompactC3", "4xLSDIRCompactR3", "4xNomos8kSC", "4xHFA2k", "4xLSDIR", "4xLSDIRplusN", "4xLSDIRplusC", "4xLSDIRplusR"], value="4xLSDIRCompactC3", |
|
info="See model infos at the bottom of this page") |
|
face_enhance = gr.Checkbox(label="Face Enhancement using GFPGAN (Doesn't work for anime images)",value=False, show_label=True) |
|
|
|
with gr.Row(): |
|
with gr.Group(): |
|
input_image = gr.Image(label="Source Image", type="pil", image_mode="RGBA") |
|
input_image_properties = gr.Textbox(label="Image Properties - Demo will throw error if input image has either width or height > 1000. Output download is jpg for smaller size. Use models locally to circument these limits.", max_lines=1) |
|
output_image = gr.Image(label="Upscaled Image", image_mode="RGBA") |
|
with gr.Row(): |
|
upscale_btn = gr.Button("Upscale") |
|
reset_btn = gr.Button("Reset") |
|
with gr.Group(): |
|
gr.Markdown( |
|
""" |
|
**Model infos** |
|
*SRVGGNetCompact models - in general faster, but less powerful, than RRDBNet* |
|
2xHFA2kCompact - use for upscaling anime images 2x, faster than 4xHFA2k but less powerful (SRVGGNetCompact) |
|
2xParimgCompact - upscaling photos 2x, fast (SRVGGNetCompact) |
|
4xLSDIRCompactN - upscale a good quality photo (no degradations) 4x, faster than 4xLSDIRN but less powerful (SRVGGNetCompact) |
|
4xLSDIRCompactC3 - upscale a jpg compressed photo 4x, fast (SRVGGNetCompact) |
|
4xLSDIRCompactR3 - upscale a degraded photo 4x, fast (SRVGGNetCompact) (too strong, best used for interpolation like 4xLSDIRCompactN (or C) 75% 4xLSDIRCompactR3 25% to add little degradation handling to the previous one) |
|
|
|
*RRDBNet models - in general more powerful than SRVGGNetCompact, but very slow in this demo* |
|
4xNomos8kSC - use for upscaling photos 4x |
|
4xHFA2k - use for upscaling anime images 4x |
|
4xLSDIR - upscale a good quality photo (no degradation) 4x |
|
4xLSDIRplusN - upscale a good quality photo (no degradation) 4x |
|
4xLSDIRplusC - upscale a jpg compressed photo 4x |
|
4xLSDIRplusR - upscale a degraded photo 4x (too strong, best used for interpolation like 4xLSDIRplusN (or C) 75% 4xLSDIRplusR 25% to add little degradation handling to the previous one) |
|
|
|
*The following are not models I had trained, but rather interpolations I had created, they are available on my [repo](https://github.com/phhofm/models) and can be tried out locally with chaiNNer:* |
|
4xLSDIRCompact3 (4xLSDIRCompactC3 + 4xLSDIRCompactR3) |
|
4xLSDIRCompact2 (4xLSDIRCompactC2 + 4xLSDIRCompactR2) |
|
4xInt-Ultracri (UltraSharp + Remacri) |
|
4xInt-Superscri (Superscale + Remacri) |
|
4xInt-Siacri(Siax + Remacri) |
|
4xInt-RemDF2K (Remacri + RealSR_DF2K_JPEG) |
|
4xInt-RemArt (Remacri + VolArt) |
|
4xInt-RemAnime (Remacri + AnimeSharp) |
|
4xInt-RemacRestore (Remacri + UltraMix_Restore) |
|
4xInt-AnimeArt (AnimeSharp + VolArt) |
|
2xInt-LD-AnimeJaNai (LD-Anime + AnimeJaNai) |
|
""") |
|
|
|
|
|
input_image.change(fn=image_properties, inputs=input_image, outputs=input_image_properties) |
|
upscale_btn.click(fn=realesrgan, inputs=[input_image, model_name, face_enhance], outputs=output_image) |
|
reset_btn.click(fn=reset, inputs=[], outputs=[output_image, input_image]) |
|
|
|
demo.launch() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|