|
import os |
|
import sys |
|
import faiss |
|
import numpy as np |
|
from sklearn.cluster import MiniBatchKMeans |
|
from multiprocessing import cpu_count |
|
|
|
exp_dir = sys.argv[1] |
|
version = sys.argv[2] |
|
|
|
try: |
|
if version == "v1": |
|
feature_dir = os.path.join(exp_dir, "3_feature256") |
|
elif version == "v2": |
|
feature_dir = os.path.join(exp_dir, "3_feature768") |
|
|
|
npys = [] |
|
listdir_res = sorted(os.listdir(feature_dir)) |
|
|
|
for name in listdir_res: |
|
file_path = os.path.join(feature_dir, name) |
|
phone = np.load(file_path) |
|
npys.append(phone) |
|
|
|
big_npy = np.concatenate(npys, axis=0) |
|
|
|
big_npy_idx = np.arange(big_npy.shape[0]) |
|
np.random.shuffle(big_npy_idx) |
|
big_npy = big_npy[big_npy_idx] |
|
|
|
if big_npy.shape[0] > 2e5: |
|
big_npy = ( |
|
MiniBatchKMeans( |
|
n_clusters=10000, |
|
verbose=True, |
|
batch_size=256 * cpu_count(), |
|
compute_labels=False, |
|
init="random", |
|
) |
|
.fit(big_npy) |
|
.cluster_centers_ |
|
) |
|
|
|
np.save(os.path.join(exp_dir, "total_fea.npy"), big_npy) |
|
|
|
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) |
|
|
|
|
|
index_trained = faiss.index_factory( |
|
256 if version == "v1" else 768, f"IVF{n_ivf},Flat" |
|
) |
|
index_ivf_trained = faiss.extract_index_ivf(index_trained) |
|
index_ivf_trained.nprobe = 1 |
|
index_trained.train(big_npy) |
|
|
|
index_filename_trained = ( |
|
f"trained_IVF{n_ivf}_Flat_nprobe_{index_ivf_trained.nprobe}_{version}.index" |
|
) |
|
index_filepath_trained = os.path.join(exp_dir, index_filename_trained) |
|
|
|
faiss.write_index(index_trained, index_filepath_trained) |
|
|
|
|
|
index_added = faiss.index_factory( |
|
256 if version == "v1" else 768, f"IVF{n_ivf},Flat" |
|
) |
|
index_ivf_added = faiss.extract_index_ivf(index_added) |
|
index_ivf_added.nprobe = 1 |
|
index_added.train(big_npy) |
|
|
|
index_filename_added = ( |
|
f"added_IVF{n_ivf}_Flat_nprobe_{index_ivf_added.nprobe}_{version}.index" |
|
) |
|
index_filepath_added = os.path.join(exp_dir, index_filename_added) |
|
|
|
batch_size_add = 8192 |
|
for i in range(0, big_npy.shape[0], batch_size_add): |
|
index_added.add(big_npy[i : i + batch_size_add]) |
|
|
|
faiss.write_index(index_added, index_filepath_added) |
|
|
|
except Exception as error: |
|
print(f"Failed to train index: {error}") |
|
|
|
print("Index training finished!") |
|
|