Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
os.system("pip install -U gradio")
|
5 |
+
os.system("pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html")
|
6 |
+
os.system("git clone https://github.com/facebookresearch/Detic.git --recurse-submodules")
|
7 |
+
|
8 |
+
# Importing necessary libraries
|
9 |
+
import numpy as np
|
10 |
+
import cv2
|
11 |
+
from PIL import Image
|
12 |
+
from detectron2.utils.visualizer import Visualizer
|
13 |
+
from detectron2.data import MetadataCatalog
|
14 |
+
from detectron2.engine import DefaultPredictor
|
15 |
+
from detectron2.config import get_cfg
|
16 |
+
|
17 |
+
# Configuring model and predictor
|
18 |
+
cfg = get_cfg()
|
19 |
+
cfg.merge_from_file("Detic/configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml")
|
20 |
+
cfg.MODEL.WEIGHTS = "https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth"
|
21 |
+
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
|
22 |
+
predictor = DefaultPredictor(cfg)
|
23 |
+
|
24 |
+
# Caption generator
|
25 |
+
from langchain.llms import OpenAIChat
|
26 |
+
session_token = os.environ.get("SessionToken")
|
27 |
+
|
28 |
+
def generate_caption(object_list_str, api_key, temperature):
|
29 |
+
query = f"You are an intelligent image captioner. I will hand you the objects and their position, and you should give me a detailed description for the photo. In this photo we have the following objects\n{object_list_str}"
|
30 |
+
llm = OpenAIChat(
|
31 |
+
model_name="gpt-3.5-turbo", openai_api_key=api_key, temperature=temperature
|
32 |
+
)
|
33 |
+
|
34 |
+
try:
|
35 |
+
caption = llm(query)
|
36 |
+
caption = caption.strip()
|
37 |
+
except:
|
38 |
+
caption = "Sorry, something went wrong!"
|
39 |
+
|
40 |
+
return caption
|
41 |
+
|
42 |
+
# Model Inference
|
43 |
+
def caption_image(img):
|
44 |
+
im = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
45 |
+
outputs = predictor(im)["instances"]
|
46 |
+
|
47 |
+
metadata = MetadataCatalog.get(cfg.DATASETS.TEST[0])
|
48 |
+
v = Visualizer(im[:, :, ::-1], metadata=metadata)
|
49 |
+
out = v.draw_instance_predictions(outputs.to("cpu"))
|
50 |
+
|
51 |
+
detected_objects = []
|
52 |
+
object_list_str = []
|
53 |
+
|
54 |
+
for i, prediction in enumerate(outputs):
|
55 |
+
x0, y0, x1, y1 = prediction.pred_boxes.tensor[0].cpu().numpy()
|
56 |
+
width = x1 - x0
|
57 |
+
height = y1 - y0
|
58 |
+
predicted_label = metadata.thing_classes[prediction.pred_classes[0]]
|
59 |
+
detected_objects.append({
|
60 |
+
"prediction": predicted_label,
|
61 |
+
"x": int(x0),
|
62 |
+
"y": int(y0),
|
63 |
+
"w": int(width),
|
64 |
+
"h": int(height)
|
65 |
+
})
|
66 |
+
object_list_str.append(f"{predicted_label} - X:({int(x0)} Y: {int(y0)} Width {int(width)} Height: {int(height)})")
|
67 |
+
|
68 |
+
# GPT3 to generate caption
|
69 |
+
api_key = session_token
|
70 |
+
if api_key is not None:
|
71 |
+
gpt_response = generate_caption(object_list_str, api_key, temperature=0.7)
|
72 |
+
else:
|
73 |
+
gpt_response = "Please paste your OpenAI key to use"
|
74 |
+
|
75 |
+
return gpt_response
|
76 |
+
|
77 |
+
# Interface
|
78 |
+
image_input = gr.inputs.Image(shape=(896, 896))
|
79 |
+
caption_output = gr.outputs.Textbox()
|
80 |
+
|
81 |
+
gr.Interface(fn=caption_image, inputs=image_input, outputs=caption_output, title="Intelligent Image Captioning", description="Generate captions for an image with object detection.").launch()
|