update the model to mt5-small
Browse files
app.py
CHANGED
@@ -1,20 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
|
4 |
-
# Load the
|
5 |
-
model_name = "
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
-
model =
|
8 |
|
9 |
-
# Define the chatbot function
|
10 |
def chatbot(user_input):
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
14 |
return response
|
15 |
|
16 |
# Set up the Gradio interface
|
17 |
-
demo = gr.Interface(fn=chatbot, inputs="text", outputs="text", title="
|
18 |
|
19 |
# Launch the app
|
20 |
demo.launch()
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
|
4 |
+
# Load the mT5-small model and tokenizer
|
5 |
+
model_name = "google/mt5-small"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
8 |
|
9 |
+
# Define the chatbot function for summarization and answering questions
|
10 |
def chatbot(user_input):
|
11 |
+
# Tokenize the user input
|
12 |
+
inputs = tokenizer(user_input, return_tensors="pt", max_length=512, truncation=True)
|
13 |
+
|
14 |
+
# Generate a response (you can customize max_length and num_beams for different outputs)
|
15 |
+
outputs = model.generate(inputs["input_ids"], max_length=150, num_beams=2, early_stopping=True)
|
16 |
+
|
17 |
+
# Decode and return the generated text
|
18 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
19 |
return response
|
20 |
|
21 |
# Set up the Gradio interface
|
22 |
+
demo = gr.Interface(fn=chatbot, inputs="text", outputs="text", title="mT5-Small Chatbot")
|
23 |
|
24 |
# Launch the app
|
25 |
demo.launch()
|
26 |
+
|