create appy.py
Browse files
app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# First, ensure transformers and gradio are installed
|
2 |
+
!pip install transformers gradio
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
|
7 |
+
# Load the Mistral AI model and tokenizer from Hugging Face
|
8 |
+
model_name = "mistralai/Mistral-7B"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
+
|
12 |
+
# Define the chatbot function
|
13 |
+
def chatbot(user_input):
|
14 |
+
inputs = tokenizer(user_input, return_tensors="pt")
|
15 |
+
outputs = model.generate(inputs['input_ids'], max_length=50)
|
16 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
17 |
+
return response
|
18 |
+
|
19 |
+
# Set up the Gradio interface
|
20 |
+
demo = gr.Interface(fn=chatbot, inputs="text", outputs="text", title="Mistral AI Chatbot")
|
21 |
+
|
22 |
+
# Launch the app
|
23 |
+
demo.launch()
|