Spaces:
Build error
Build error
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
from sklearn.preprocessing import MinMaxScaler | |
import telebot | |
from keras.models import Sequential | |
from keras.layers import LSTM | |
from keras.layers import Dropout | |
from keras.layers import Dense | |
import numpy | |
from sklearn.model_selection import train_test_split | |
import tensorflow as tf | |
from tensorflow import keras | |
from tensorflow.keras import layers | |
from sklearn.metrics import mean_squared_error as mse | |
import yfinance as yf | |
import telebot | |
from keras.models import load_model | |
import datetime | |
k='6919541100:AAFhyMD2AbL62FQ2v5MixJTiUve877w2YEE' | |
bot=telebot.TeleBot(k, parse_mode=None) | |
def sty(sos): | |
head, sep, tail=sos.partition(' ') | |
split=head.split('-') | |
y, m, d=int(split[0]), int(split[1]), int(split[2]) | |
return datetime.datetime(year=y, month=m, day=d) | |
def hey(df): | |
#df=do[[0, 1, 2]] | |
#df=df[['Date', 'Open', 'Close']] | |
df.reset_index(drop=False, inplace=True) | |
#df=MinMaxScaler(feature_range=(0, 1)).fit_transform(df) | |
#df['Date']=df['Date'].apply(sty) | |
X=df[['Open']] | |
X=X.to_numpy() | |
X=X.astype(np.float32) | |
y=df[['Close']] | |
Y=y.to_numpy() | |
#Y=y.reshape(-1, 1) | |
Y=Y.astype(np.float32) | |
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=42) | |
sc=MinMaxScaler(feature_range=(0, 1)) | |
X_train=sc.fit_transform(X_train) | |
X_test=sc.transform(X_test) | |
#model=load_model('lstm3.keras') | |
model = Sequential() | |
model.add(LSTM(units=64,return_sequences=True, input_shape=(X_train.shape[1], 1))) | |
model.add(Dropout(0.2)) | |
model.add(LSTM(units=64,return_sequences=True)) | |
model.add(Dropout(0.2)) | |
model.add(LSTM(units=32,return_sequences=True)) | |
model.add(Dropout(0.2)) | |
model.add(LSTM(units=32)) | |
model.add(Dropout(0.2)) | |
model.add(Dense(units=1)) | |
model.compile(optimizer='adam',loss='mse') | |
model.fit(X_train,y_train,epochs=4,batch_size=2) | |
y_pr=model.predict(X_test) | |
#rmse=sqrt(mse(y_test, y_pr)) | |
#print(y_pr) | |
#print(X_test) | |
return model.predict([[df['Open'].iloc[-1]]]) | |
def yff(coin): | |
bb=yf.Ticker(coin) | |
d=bb.history(period='max') | |
return d | |
tok='6432200967:AAFjrIZ_I6XOEfbxCRJVz9giK2fXRysfptA' | |
bot = telebot.TeleBot(tok, parse_mode=None) | |
st.button("Reset", type="primary") | |
if st.button('Say hello'): | |
st.write('Why hello there') | |
else: | |
st.write('Goodbye') | |
def hey(): | |
def send_welcome(message): | |
bot.reply_to(message, hey(yff(message.text)) ) | |
bot.infinity_polling() | |
st.button('Click me', on_click=hey) | |
#option = webdriver.ChromeOptions() | |
#browser = webdriver.Chrome(service=s, options=option) | |
#def het(): | |
#browser.get('http://www.google.com') | |
#st.button('Click you', on_click=het) |