PeterPinetree's picture
Enhance UI styling and layout for Next-Token Predictor with gradient backgrounds, improved button designs, and updated tooltip functionality
35d29d6
import gradio as gr
import json
import os
import time
import torch
from typing import List, Dict, Tuple
from dotenv import load_dotenv
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load environment variables from .env file
load_dotenv()
# Configuration
MODEL_ID = "Qwen/Qwen3-0.6B"
HF_TOKEN = os.getenv('HF_NEXT_TOKEN_PREDICTOR_TOKEN', '')
# Initialize model and tokenizer (local inference like the working app)
print("Loading model and tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
def show_token(token: str) -> str:
"""Format token for display"""
if token == "\n":
return "⏎"
elif token.strip() == "":
return f"␣{'' if len(token) == 1 else '×' + str(len(token))}"
return token
def predict_next_token(text: str, top_k: int = 10, temperature: float = 1.0, top_p: float = 0.9) -> Tuple[List[Dict], str]:
"""Predict next tokens using local model with temperature and top-p filtering"""
if not text.strip():
return [], "Please enter some text to predict from"
start_time = time.time()
try:
# Use local model inference
tokens = tokenizer(text, return_tensors="pt", padding=False)
out = model.generate(
**tokens,
max_new_tokens=1,
output_scores=True,
return_dict_in_generate=True,
pad_token_id=tokenizer.eos_token_id,
do_sample=False,
)
# Get raw logits and apply temperature scaling
logits = out.scores[0]
scaled_logits = logits / temperature
scores = torch.softmax(scaled_logits, dim=-1)
# Apply top-p filtering (nucleus sampling)
sorted_probs, sorted_indices = torch.sort(scores, descending=True)
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
# Find the cutoff point for top-p
cutoff_index = torch.where(cumulative_probs >= top_p)[1]
if len(cutoff_index) > 0:
cutoff = cutoff_index[0].item() + 1
top_p_indices = sorted_indices[0, :cutoff]
top_p_probs = sorted_probs[0, :cutoff]
else:
# Fallback if top_p is very low
top_p_indices = sorted_indices[0, :min(50, len(sorted_indices[0]))]
top_p_probs = sorted_probs[0, :min(50, len(sorted_probs[0]))]
# Apply top-k to the top-p filtered results
final_k = min(top_k, len(top_p_indices))
final_indices = top_p_indices[:final_k]
final_probs = top_p_probs[:final_k]
# Convert to tokens
token_ids = [int(idx) for idx in final_indices]
probs = [float(prob) for prob in final_probs]
tokens_text = [tokenizer.decode([tid]) for tid in token_ids]
# Create token data structure
tokens_data = []
for i in range(len(token_ids)):
tokens_data.append({
"token": tokens_text[i],
"prob": probs[i]
})
prediction_time = int((time.time() - start_time) * 1000)
return tokens_data, f"Prediction time: {prediction_time}ms"
except Exception as e:
return [], f"❌ Error: {str(e)}"
def create_clickable_token_display(tokens_data: List[Dict]) -> str:
"""Create HTML display with clickable tokens - simplified without JavaScript"""
html = """
<div id="token-predictions" style="font-family: ui-monospace, SFMono-Regular, Menlo, Consolas, monospace; background: #0e162b; border: 1px solid #1c2945; border-radius: 14px; padding: 12px;">
"""
for i, token_data in enumerate(tokens_data):
token_display = show_token(token_data['token'])
percentage = f"{token_data['prob'] * 100:.2f}%"
html += f"""
<div class="token-prediction" data-token="{token_data['token']}"
style="display: grid; grid-template-columns: 1fr auto; gap: 8px; align-items: center; padding: 8px 10px; margin: 4px 0; border-radius: 10px; background: #0f1930; border: 1px solid #22365e; cursor: pointer; transition: background 0.2s;"
onmouseover="this.style.background='#1a2b4a'"
onmouseout="this.style.background='#0f1930'">
<div style="color: #e6f1ff; font-size: 14px;">{token_display}</div>
<div style="color: #9ab0d0; font-size: 12px;">{percentage}</div>
</div>
"""
html += """
</div>
"""
return html
# Custom CSS to match the Token Visualizer gradient color scheme
custom_css = """
/* Main container with gradient background like Token Visualizer */
.gradio-container {
background: linear-gradient(135deg, #0f172a 0%, #1e293b 50%, #0f172a 100%) !important;
color: #e2e8f0 !important;
min-height: 100vh !important;
}
/* Blocks with subtle transparency and borders */
.block {
background: rgba(15, 23, 42, 0.8) !important;
border: 1px solid rgba(148, 163, 184, 0.2) !important;
border-radius: 12px !important;
backdrop-filter: blur(8px) !important;
}
/* Tab styling */
.tab-item {
background: rgba(30, 41, 59, 0.6) !important;
border: 1px solid rgba(148, 163, 184, 0.2) !important;
border-radius: 8px !important;
}
/* Token buttons with modern gradient and hover effects */
.token-button {
background: linear-gradient(135deg, #1e293b 0%, #334155 100%) !important;
border: 1px solid rgba(148, 163, 184, 0.3) !important;
color: #e2e8f0 !important;
border-radius: 8px !important;
margin: 0px !important;
padding: 3px 8px !important;
font-family: ui-monospace, SFMono-Regular, Menlo, Consolas, monospace !important;
transition: all 0.3s ease !important;
font-size: 12px !important;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.3) !important;
}
.token-button:hover {
background: linear-gradient(135deg, #334155 0%, #475569 100%) !important;
border-color: rgba(148, 163, 184, 0.5) !important;
transform: translateY(-1px) !important;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.4) !important;
}
/* Input fields styling */
.gr-textbox {
background: rgba(30, 41, 59, 0.6) !important;
border: 1px solid rgba(148, 163, 184, 0.3) !important;
border-radius: 8px !important;
color: #e2e8f0 !important;
}
/* Slider styling */
.gr-slider {
background: rgba(30, 41, 59, 0.6) !important;
}
.gr-slider input[type="range"] {
background: linear-gradient(to right, #3b82f6, #06b6d4) !important;
}
/* Labels and text */
.gr-label {
color: #cbd5e1 !important;
font-weight: 500 !important;
}
.gr-info {
color: #94a3b8 !important;
background: rgba(30, 41, 59, 0.4) !important;
border-radius: 6px !important;
padding: 4px 8px !important;
border: 1px solid rgba(148, 163, 184, 0.2) !important;
}
/* Remove Gradio's default spacing between buttons */
.token-button + .token-button {
margin-top: 0px !important;
}
/* Remove gaps in the column containing buttons */
div:has(> .token-button) {
gap: 0px !important;
}
/* Target Gradio's automatic spacing */
.block > div > div {
gap: 0px !important;
}
/* Hide spinner arrows on number inputs */
input[type="number"]::-webkit-outer-spin-button,
input[type="number"]::-webkit-inner-spin-button {
-webkit-appearance: none !important;
margin: 0 !important;
}
input[type="number"] {
-moz-appearance: textfield !important;
}
/* Header styling to match Token Visualizer */
h1, h2, h3, h4 {
background: linear-gradient(135deg, #e2e8f0 0%, #94a3b8 100%) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
background-clip: text !important;
}
/* Interactive tooltip icons in labels */
.gr-label {
position: relative !important;
}
/* Add tooltip functionality with JavaScript */
.gr-label:has-text("ⓘ"):hover::after {
content: attr(data-tooltip);
position: absolute;
background: rgba(15, 23, 42, 0.95);
color: #e2e8f0;
padding: 8px 12px;
border-radius: 6px;
font-size: 12px;
max-width: 250px;
border: 1px solid rgba(148, 163, 184, 0.3);
z-index: 1000;
top: 100%;
left: 0;
margin-top: 5px;
white-space: pre-wrap;
}
"""
# Create Gradio interface
with gr.Blocks(css=custom_css, title="Next-Token Predictor") as app:
gr.HTML("""
<div style="text-align: center; padding: 32px 20px; background: linear-gradient(135deg, rgba(15, 23, 42, 0.9) 0%, rgba(30, 41, 59, 0.9) 50%, rgba(15, 23, 42, 0.9) 100%); border-bottom: 1px solid rgba(148, 163, 184, 0.2); backdrop-filter: blur(8px);">
<h1 style="background: linear-gradient(135deg, #e2e8f0 0%, #94a3b8 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text; margin: 0; font-size: 28px; font-weight: 600;">Next-Token Predictor</h1>
<p style="color: #94a3b8; margin: 12px 0 0 0; font-size: 16px; opacity: 0.9;">Explore how AI predicts the next word! Click on predictions to append them.</p>
</div>
""")
with gr.Column():
text_input = gr.Textbox(
label="Enter your prompt:",
placeholder="Type anything... predictions update automatically!",
value="Twinkle, twinkle, little ",
lines=3,
info="💡 Try: 'The weather today is', 'I think that', 'Once upon a time'"
)
# Next Token Predictions directly below input
with gr.Column():
gr.HTML("<h4 style='background: linear-gradient(135deg, #e2e8f0 0%, #94a3b8 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text; margin: 0; font-weight: 600;'>Next Token Predictions</h4>")
# Create buttons for each possible token (we'll show/hide as needed)
token_buttons = []
for i in range(15): # Support up to 15 tokens
btn = gr.Button(
value="",
visible=False,
elem_classes=["token-button"],
size="sm"
)
token_buttons.append(btn)
# Parameter controls below predictions
with gr.Row():
with gr.Column():
top_k = gr.Slider(
minimum=5,
maximum=15,
value=10,
step=1,
label="Top-K",
info="Number of most likely words to consider",
show_label=True,
interactive=True
)
with gr.Column():
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
label="Temperature",
info="Controls randomness in predictions",
show_label=True,
interactive=True
)
with gr.Column():
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-P",
info="Probability threshold for word selection",
show_label=True,
interactive=True
)
timing_info = gr.HTML(value="<div style='color: #94a3b8; font-size: 12px; opacity: 0.8;'>✨ Predictions update as you type!</div>")
# Store current tokens data
current_tokens = gr.State([])
def update_predictions_and_buttons(text, k, temp, p):
tokens_data, timing = predict_next_token(text, int(k), float(temp), float(p))
# Update button states
button_updates = []
for i in range(15):
if i < len(tokens_data):
token = tokens_data[i]['token']
prob = tokens_data[i]['prob']
display_token = show_token(token)
button_label = f"{display_token} ({prob*100:.1f}%)"
button_updates.append(gr.Button(value=button_label, visible=True))
else:
button_updates.append(gr.Button(visible=False))
return [timing, tokens_data] + button_updates
def append_token_to_input(current_text, tokens_data, button_index):
if tokens_data and 0 <= button_index < len(tokens_data):
token = tokens_data[button_index]['token']
return current_text + token
return current_text
# Auto-predict on any input change
outputs = [timing_info, current_tokens] + token_buttons
for component in [text_input, top_k, temperature, top_p]:
component.change(
update_predictions_and_buttons,
inputs=[text_input, top_k, temperature, top_p],
outputs=outputs
)
# Set up click handlers for each token button
for i, btn in enumerate(token_buttons):
btn.click(
lambda text, tokens, idx=i: append_token_to_input(text, tokens, idx),
inputs=[text_input, current_tokens],
outputs=[text_input]
)
# Load initial predictions on app start
app.load(
lambda: update_predictions_and_buttons("Twinkle, twinkle, little ", 10, 1.0, 0.9),
outputs=outputs
)
if __name__ == "__main__":
app.launch(share=False)