|
import os |
|
import time |
|
import random |
|
import json |
|
import asyncio |
|
import requests |
|
from fastapi import FastAPI, HTTPException, Request |
|
from fastapi.responses import StreamingResponse |
|
from pydantic import BaseModel |
|
from typing import List, Optional, Union |
|
|
|
app = FastAPI() |
|
|
|
class ChatCompletionMessage(BaseModel): |
|
role: str |
|
content: str |
|
|
|
class ChatCompletionRequest(BaseModel): |
|
model: str |
|
messages: List[ChatCompletionMessage] |
|
temperature: Optional[float] = 1.0 |
|
max_tokens: Optional[int] = None |
|
stream: Optional[bool] = False |
|
|
|
class ChatCompletionResponse(BaseModel): |
|
id: str |
|
object: str |
|
created: int |
|
model: str |
|
choices: List[dict] |
|
usage: dict |
|
|
|
def generate_random_ip(): |
|
return f"{random.randint(1,255)}.{random.randint(0,255)}.{random.randint(0,255)}.{random.randint(0,255)}" |
|
|
|
async def fetch_response(messages: List[ChatCompletionMessage], model: str): |
|
your_api_url = "https://chatpro.ai-pro.org/api/ask/openAI" |
|
headers = { |
|
"content-type": "application/json", |
|
"X-Forwarded-For": generate_random_ip(), |
|
"origin": "https://chatpro.ai-pro.org", |
|
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36" |
|
} |
|
|
|
conversation = "\n".join([f"{msg.role}: {msg.content}" for msg in messages]) |
|
conversation += "\n请关注并回复user最近的消息并避免总结对话历史的回答" |
|
|
|
data = { |
|
"text": conversation, |
|
"endpoint": "openAI", |
|
"model": model |
|
} |
|
|
|
response = requests.post(your_api_url, headers=headers, json=data) |
|
|
|
if response.status_code != 200: |
|
raise HTTPException(status_code=response.status_code, detail="Error from upstream API") |
|
|
|
return response.json() |
|
|
|
async def stream_response(content: str): |
|
chunk_size = len(content) |
|
chat_id = f"chatcmpl-{os.urandom(12).hex()}" |
|
|
|
|
|
yield f"data: {json.dumps({ |
|
'id': chat_id, |
|
'object': 'chat.completion.chunk', |
|
'created': int(time.time()), |
|
'model': 'gpt-3.5-turbo-0613', |
|
'choices': [{ |
|
'index': 0, |
|
'delta': { |
|
'content': content |
|
}, |
|
'finish_reason': None |
|
}] |
|
})}\n\n" |
|
|
|
|
|
yield f"data: {json.dumps({ |
|
'id': chat_id, |
|
'object': 'chat.completion.chunk', |
|
'created': int(time.time()), |
|
'model': 'gpt-3.5-turbo-0613', |
|
'choices': [{ |
|
'index': 0, |
|
'delta': {}, |
|
'finish_reason': 'stop' |
|
}] |
|
})}\n\n" |
|
|
|
yield 'data: [DONE]\n\n' |
|
|
|
@app.post("/hf/v1/chat/completions") |
|
async def chat_completions(request: Request): |
|
body = await request.json() |
|
chat_request = ChatCompletionRequest(**body) |
|
|
|
api_response = await fetch_response(chat_request.messages, chat_request.model) |
|
|
|
content = api_response.get("response", "") |
|
|
|
if chat_request.stream: |
|
return StreamingResponse(stream_response(content), media_type="text/event-stream") |
|
else: |
|
openai_response = ChatCompletionResponse( |
|
id="chatcmpl-" + os.urandom(12).hex(), |
|
object="chat.completion", |
|
created=int(time.time()), |
|
model=chat_request.model, |
|
choices=[ |
|
{ |
|
"index": 0, |
|
"message": { |
|
"role": "assistant", |
|
"content": content |
|
}, |
|
"finish_reason": "stop" |
|
} |
|
], |
|
usage={ |
|
"prompt_tokens": sum(len(msg.content) for msg in chat_request.messages), |
|
"completion_tokens": len(content), |
|
"total_tokens": sum(len(msg.content) for msg in chat_request.messages) + len(content) |
|
} |
|
) |
|
return openai_response |