|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  | from typing import Callable, Dict, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from huggingface_hub.utils import validate_hf_hub_args | 
					
						
						|  |  | 
					
						
						|  | from ..utils import ( | 
					
						
						|  | USE_PEFT_BACKEND, | 
					
						
						|  | deprecate, | 
					
						
						|  | get_submodule_by_name, | 
					
						
						|  | is_peft_available, | 
					
						
						|  | is_peft_version, | 
					
						
						|  | is_torch_version, | 
					
						
						|  | is_transformers_available, | 
					
						
						|  | is_transformers_version, | 
					
						
						|  | logging, | 
					
						
						|  | ) | 
					
						
						|  | from .lora_base import ( | 
					
						
						|  | LORA_WEIGHT_NAME, | 
					
						
						|  | LORA_WEIGHT_NAME_SAFE, | 
					
						
						|  | LoraBaseMixin, | 
					
						
						|  | _fetch_state_dict, | 
					
						
						|  | _load_lora_into_text_encoder, | 
					
						
						|  | ) | 
					
						
						|  | from .lora_conversion_utils import ( | 
					
						
						|  | _convert_bfl_flux_control_lora_to_diffusers, | 
					
						
						|  | _convert_hunyuan_video_lora_to_diffusers, | 
					
						
						|  | _convert_kohya_flux_lora_to_diffusers, | 
					
						
						|  | _convert_non_diffusers_lora_to_diffusers, | 
					
						
						|  | _convert_xlabs_flux_lora_to_diffusers, | 
					
						
						|  | _maybe_map_sgm_blocks_to_diffusers, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _LOW_CPU_MEM_USAGE_DEFAULT_LORA = False | 
					
						
						|  | if is_torch_version(">=", "1.9.0"): | 
					
						
						|  | if ( | 
					
						
						|  | is_peft_available() | 
					
						
						|  | and is_peft_version(">=", "0.13.1") | 
					
						
						|  | and is_transformers_available() | 
					
						
						|  | and is_transformers_version(">", "4.45.2") | 
					
						
						|  | ): | 
					
						
						|  | _LOW_CPU_MEM_USAGE_DEFAULT_LORA = True | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | TEXT_ENCODER_NAME = "text_encoder" | 
					
						
						|  | UNET_NAME = "unet" | 
					
						
						|  | TRANSFORMER_NAME = "transformer" | 
					
						
						|  |  | 
					
						
						|  | _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX = {"x_embedder": "in_channels"} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class StableDiffusionLoraLoaderMixin(LoraBaseMixin): | 
					
						
						|  | r""" | 
					
						
						|  | Load LoRA layers into Stable Diffusion [`UNet2DConditionModel`] and | 
					
						
						|  | [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _lora_loadable_modules = ["unet", "text_encoder"] | 
					
						
						|  | unet_name = UNET_NAME | 
					
						
						|  | text_encoder_name = TEXT_ENCODER_NAME | 
					
						
						|  |  | 
					
						
						|  | def load_lora_weights( | 
					
						
						|  | self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and | 
					
						
						|  | `self.text_encoder`. | 
					
						
						|  |  | 
					
						
						|  | All kwargs are forwarded to `self.lora_state_dict`. | 
					
						
						|  |  | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is | 
					
						
						|  | loaded. | 
					
						
						|  |  | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is | 
					
						
						|  | loaded into `self.unet`. | 
					
						
						|  |  | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state | 
					
						
						|  | dict is loaded into `self.text_encoder`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | kwargs (`dict`, *optional*): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | """ | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | raise ValueError("PEFT backend is required for this method.") | 
					
						
						|  |  | 
					
						
						|  | low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | 
					
						
						|  | if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(pretrained_model_name_or_path_or_dict, dict): | 
					
						
						|  | pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | is_correct_format = all("lora" in key for key in state_dict.keys()) | 
					
						
						|  | if not is_correct_format: | 
					
						
						|  | raise ValueError("Invalid LoRA checkpoint.") | 
					
						
						|  |  | 
					
						
						|  | self.load_lora_into_unet( | 
					
						
						|  | state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=self, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  | self.load_lora_into_text_encoder( | 
					
						
						|  | state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | text_encoder=getattr(self, self.text_encoder_name) | 
					
						
						|  | if not hasattr(self, "text_encoder") | 
					
						
						|  | else self.text_encoder, | 
					
						
						|  | lora_scale=self.lora_scale, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=self, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | @validate_hf_hub_args | 
					
						
						|  | def lora_state_dict( | 
					
						
						|  | cls, | 
					
						
						|  | pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Return state dict for lora weights and the network alphas. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | We support loading A1111 formatted LoRA checkpoints in a limited capacity. | 
					
						
						|  |  | 
					
						
						|  | This function is experimental and might change in the future. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | Can be either: | 
					
						
						|  |  | 
					
						
						|  | - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | 
					
						
						|  | the Hub. | 
					
						
						|  | - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | 
					
						
						|  | with [`ModelMixin.save_pretrained`]. | 
					
						
						|  | - A [torch state | 
					
						
						|  | dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | 
					
						
						|  |  | 
					
						
						|  | cache_dir (`Union[str, os.PathLike]`, *optional*): | 
					
						
						|  | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | 
					
						
						|  | is not used. | 
					
						
						|  | force_download (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not to force the (re-)download of the model weights and configuration files, overriding the | 
					
						
						|  | cached versions if they exist. | 
					
						
						|  |  | 
					
						
						|  | proxies (`Dict[str, str]`, *optional*): | 
					
						
						|  | A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | 
					
						
						|  | 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | 
					
						
						|  | local_files_only (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to only load local model weights and configuration files or not. If set to `True`, the model | 
					
						
						|  | won't be downloaded from the Hub. | 
					
						
						|  | token (`str` or *bool*, *optional*): | 
					
						
						|  | The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | 
					
						
						|  | `diffusers-cli login` (stored in `~/.huggingface`) is used. | 
					
						
						|  | revision (`str`, *optional*, defaults to `"main"`): | 
					
						
						|  | The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | 
					
						
						|  | allowed by Git. | 
					
						
						|  | subfolder (`str`, *optional*, defaults to `""`): | 
					
						
						|  | The subfolder location of a model file within a larger model repository on the Hub or locally. | 
					
						
						|  | weight_name (`str`, *optional*, defaults to None): | 
					
						
						|  | Name of the serialized state dict file. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cache_dir = kwargs.pop("cache_dir", None) | 
					
						
						|  | force_download = kwargs.pop("force_download", False) | 
					
						
						|  | proxies = kwargs.pop("proxies", None) | 
					
						
						|  | local_files_only = kwargs.pop("local_files_only", None) | 
					
						
						|  | token = kwargs.pop("token", None) | 
					
						
						|  | revision = kwargs.pop("revision", None) | 
					
						
						|  | subfolder = kwargs.pop("subfolder", None) | 
					
						
						|  | weight_name = kwargs.pop("weight_name", None) | 
					
						
						|  | unet_config = kwargs.pop("unet_config", None) | 
					
						
						|  | use_safetensors = kwargs.pop("use_safetensors", None) | 
					
						
						|  |  | 
					
						
						|  | allow_pickle = False | 
					
						
						|  | if use_safetensors is None: | 
					
						
						|  | use_safetensors = True | 
					
						
						|  | allow_pickle = True | 
					
						
						|  |  | 
					
						
						|  | user_agent = { | 
					
						
						|  | "file_type": "attn_procs_weights", | 
					
						
						|  | "framework": "pytorch", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | state_dict = _fetch_state_dict( | 
					
						
						|  | pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | use_safetensors=use_safetensors, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | force_download=force_download, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | token=token, | 
					
						
						|  | revision=revision, | 
					
						
						|  | subfolder=subfolder, | 
					
						
						|  | user_agent=user_agent, | 
					
						
						|  | allow_pickle=allow_pickle, | 
					
						
						|  | ) | 
					
						
						|  | is_dora_scale_present = any("dora_scale" in k for k in state_dict) | 
					
						
						|  | if is_dora_scale_present: | 
					
						
						|  | warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | 
					
						
						|  | logger.warning(warn_msg) | 
					
						
						|  | state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | 
					
						
						|  |  | 
					
						
						|  | network_alphas = None | 
					
						
						|  |  | 
					
						
						|  | if all( | 
					
						
						|  | ( | 
					
						
						|  | k.startswith("lora_te_") | 
					
						
						|  | or k.startswith("lora_unet_") | 
					
						
						|  | or k.startswith("lora_te1_") | 
					
						
						|  | or k.startswith("lora_te2_") | 
					
						
						|  | ) | 
					
						
						|  | for k in state_dict.keys() | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | if unet_config is not None: | 
					
						
						|  |  | 
					
						
						|  | state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config) | 
					
						
						|  | state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict) | 
					
						
						|  |  | 
					
						
						|  | return state_dict, network_alphas | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def load_lora_into_unet( | 
					
						
						|  | cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | This will load the LoRA layers specified in `state_dict` into `unet`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | state_dict (`dict`): | 
					
						
						|  | A standard state dict containing the lora layer parameters. The keys can either be indexed directly | 
					
						
						|  | into the unet or prefixed with an additional `unet` which can be used to distinguish between text | 
					
						
						|  | encoder lora layers. | 
					
						
						|  | network_alphas (`Dict[str, float]`): | 
					
						
						|  | The value of the network alpha used for stable learning and preventing underflow. This value has the | 
					
						
						|  | same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | 
					
						
						|  | link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | 
					
						
						|  | unet (`UNet2DConditionModel`): | 
					
						
						|  | The UNet model to load the LoRA layers into. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | """ | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | raise ValueError("PEFT backend is required for this method.") | 
					
						
						|  |  | 
					
						
						|  | if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | keys = list(state_dict.keys()) | 
					
						
						|  | only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys) | 
					
						
						|  | if not only_text_encoder: | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Loading {cls.unet_name}.") | 
					
						
						|  | unet.load_lora_adapter( | 
					
						
						|  | state_dict, | 
					
						
						|  | prefix=cls.unet_name, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=_pipeline, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def load_lora_into_text_encoder( | 
					
						
						|  | cls, | 
					
						
						|  | state_dict, | 
					
						
						|  | network_alphas, | 
					
						
						|  | text_encoder, | 
					
						
						|  | prefix=None, | 
					
						
						|  | lora_scale=1.0, | 
					
						
						|  | adapter_name=None, | 
					
						
						|  | _pipeline=None, | 
					
						
						|  | low_cpu_mem_usage=False, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | This will load the LoRA layers specified in `state_dict` into `text_encoder` | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | state_dict (`dict`): | 
					
						
						|  | A standard state dict containing the lora layer parameters. The key should be prefixed with an | 
					
						
						|  | additional `text_encoder` to distinguish between unet lora layers. | 
					
						
						|  | network_alphas (`Dict[str, float]`): | 
					
						
						|  | The value of the network alpha used for stable learning and preventing underflow. This value has the | 
					
						
						|  | same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | 
					
						
						|  | link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | 
					
						
						|  | text_encoder (`CLIPTextModel`): | 
					
						
						|  | The text encoder model to load the LoRA layers into. | 
					
						
						|  | prefix (`str`): | 
					
						
						|  | Expected prefix of the `text_encoder` in the `state_dict`. | 
					
						
						|  | lora_scale (`float`): | 
					
						
						|  | How much to scale the output of the lora linear layer before it is added with the output of the regular | 
					
						
						|  | lora layer. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | """ | 
					
						
						|  | _load_lora_into_text_encoder( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | lora_scale=lora_scale, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | prefix=prefix, | 
					
						
						|  | text_encoder_name=cls.text_encoder_name, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=_pipeline, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def save_lora_weights( | 
					
						
						|  | cls, | 
					
						
						|  | save_directory: Union[str, os.PathLike], | 
					
						
						|  | unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, | 
					
						
						|  | is_main_process: bool = True, | 
					
						
						|  | weight_name: str = None, | 
					
						
						|  | save_function: Callable = None, | 
					
						
						|  | safe_serialization: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Save the LoRA parameters corresponding to the UNet and text encoder. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | save_directory (`str` or `os.PathLike`): | 
					
						
						|  | Directory to save LoRA parameters to. Will be created if it doesn't exist. | 
					
						
						|  | unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `unet`. | 
					
						
						|  | text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text | 
					
						
						|  | encoder LoRA state dict because it comes from 🤗 Transformers. | 
					
						
						|  | is_main_process (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether the process calling this is the main process or not. Useful during distributed training and you | 
					
						
						|  | need to call this function on all processes. In this case, set `is_main_process=True` only on the main | 
					
						
						|  | process to avoid race conditions. | 
					
						
						|  | save_function (`Callable`): | 
					
						
						|  | The function to use to save the state dictionary. Useful during distributed training when you need to | 
					
						
						|  | replace `torch.save` with another method. Can be configured with the environment variable | 
					
						
						|  | `DIFFUSERS_SAVE_MODE`. | 
					
						
						|  | safe_serialization (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | 
					
						
						|  | """ | 
					
						
						|  | state_dict = {} | 
					
						
						|  |  | 
					
						
						|  | if not (unet_lora_layers or text_encoder_lora_layers): | 
					
						
						|  | raise ValueError("You must pass at least one of `unet_lora_layers` and `text_encoder_lora_layers`.") | 
					
						
						|  |  | 
					
						
						|  | if unet_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(unet_lora_layers, cls.unet_name)) | 
					
						
						|  |  | 
					
						
						|  | if text_encoder_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cls.write_lora_layers( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | save_directory=save_directory, | 
					
						
						|  | is_main_process=is_main_process, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | save_function=save_function, | 
					
						
						|  | safe_serialization=safe_serialization, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def fuse_lora( | 
					
						
						|  | self, | 
					
						
						|  | components: List[str] = ["unet", "text_encoder"], | 
					
						
						|  | lora_scale: float = 1.0, | 
					
						
						|  | safe_fusing: bool = False, | 
					
						
						|  | adapter_names: Optional[List[str]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Fuses the LoRA parameters into the original parameters of the corresponding blocks. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | 
					
						
						|  | lora_scale (`float`, defaults to 1.0): | 
					
						
						|  | Controls how much to influence the outputs with the LoRA parameters. | 
					
						
						|  | safe_fusing (`bool`, defaults to `False`): | 
					
						
						|  | Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | 
					
						
						|  | adapter_names (`List[str]`, *optional*): | 
					
						
						|  | Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```py | 
					
						
						|  | from diffusers import DiffusionPipeline | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | pipeline = DiffusionPipeline.from_pretrained( | 
					
						
						|  | "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | 
					
						
						|  | ).to("cuda") | 
					
						
						|  | pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | 
					
						
						|  | pipeline.fuse_lora(lora_scale=0.7) | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  | super().fuse_lora( | 
					
						
						|  | components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def unfuse_lora(self, components: List[str] = ["unet", "text_encoder"], **kwargs): | 
					
						
						|  | r""" | 
					
						
						|  | Reverses the effect of | 
					
						
						|  | [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | 
					
						
						|  | unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | 
					
						
						|  | unfuse_text_encoder (`bool`, defaults to `True`): | 
					
						
						|  | Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the | 
					
						
						|  | LoRA parameters then it won't have any effect. | 
					
						
						|  | """ | 
					
						
						|  | super().unfuse_lora(components=components) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin): | 
					
						
						|  | r""" | 
					
						
						|  | Load LoRA layers into Stable Diffusion XL [`UNet2DConditionModel`], | 
					
						
						|  | [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and | 
					
						
						|  | [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _lora_loadable_modules = ["unet", "text_encoder", "text_encoder_2"] | 
					
						
						|  | unet_name = UNET_NAME | 
					
						
						|  | text_encoder_name = TEXT_ENCODER_NAME | 
					
						
						|  |  | 
					
						
						|  | def load_lora_weights( | 
					
						
						|  | self, | 
					
						
						|  | pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | 
					
						
						|  | adapter_name: Optional[str] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and | 
					
						
						|  | `self.text_encoder`. | 
					
						
						|  |  | 
					
						
						|  | All kwargs are forwarded to `self.lora_state_dict`. | 
					
						
						|  |  | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is | 
					
						
						|  | loaded. | 
					
						
						|  |  | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is | 
					
						
						|  | loaded into `self.unet`. | 
					
						
						|  |  | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state | 
					
						
						|  | dict is loaded into `self.text_encoder`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | kwargs (`dict`, *optional*): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | """ | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | raise ValueError("PEFT backend is required for this method.") | 
					
						
						|  |  | 
					
						
						|  | low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | 
					
						
						|  | if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(pretrained_model_name_or_path_or_dict, dict): | 
					
						
						|  | pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_dict, network_alphas = self.lora_state_dict( | 
					
						
						|  | pretrained_model_name_or_path_or_dict, | 
					
						
						|  | unet_config=self.unet.config, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | is_correct_format = all("lora" in key for key in state_dict.keys()) | 
					
						
						|  | if not is_correct_format: | 
					
						
						|  | raise ValueError("Invalid LoRA checkpoint.") | 
					
						
						|  |  | 
					
						
						|  | self.load_lora_into_unet( | 
					
						
						|  | state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | unet=self.unet, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=self, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  | text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} | 
					
						
						|  | if len(text_encoder_state_dict) > 0: | 
					
						
						|  | self.load_lora_into_text_encoder( | 
					
						
						|  | text_encoder_state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | text_encoder=self.text_encoder, | 
					
						
						|  | prefix="text_encoder", | 
					
						
						|  | lora_scale=self.lora_scale, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=self, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} | 
					
						
						|  | if len(text_encoder_2_state_dict) > 0: | 
					
						
						|  | self.load_lora_into_text_encoder( | 
					
						
						|  | text_encoder_2_state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | text_encoder=self.text_encoder_2, | 
					
						
						|  | prefix="text_encoder_2", | 
					
						
						|  | lora_scale=self.lora_scale, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=self, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | @validate_hf_hub_args | 
					
						
						|  |  | 
					
						
						|  | def lora_state_dict( | 
					
						
						|  | cls, | 
					
						
						|  | pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Return state dict for lora weights and the network alphas. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | We support loading A1111 formatted LoRA checkpoints in a limited capacity. | 
					
						
						|  |  | 
					
						
						|  | This function is experimental and might change in the future. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | Can be either: | 
					
						
						|  |  | 
					
						
						|  | - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | 
					
						
						|  | the Hub. | 
					
						
						|  | - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | 
					
						
						|  | with [`ModelMixin.save_pretrained`]. | 
					
						
						|  | - A [torch state | 
					
						
						|  | dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | 
					
						
						|  |  | 
					
						
						|  | cache_dir (`Union[str, os.PathLike]`, *optional*): | 
					
						
						|  | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | 
					
						
						|  | is not used. | 
					
						
						|  | force_download (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not to force the (re-)download of the model weights and configuration files, overriding the | 
					
						
						|  | cached versions if they exist. | 
					
						
						|  |  | 
					
						
						|  | proxies (`Dict[str, str]`, *optional*): | 
					
						
						|  | A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | 
					
						
						|  | 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | 
					
						
						|  | local_files_only (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to only load local model weights and configuration files or not. If set to `True`, the model | 
					
						
						|  | won't be downloaded from the Hub. | 
					
						
						|  | token (`str` or *bool*, *optional*): | 
					
						
						|  | The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | 
					
						
						|  | `diffusers-cli login` (stored in `~/.huggingface`) is used. | 
					
						
						|  | revision (`str`, *optional*, defaults to `"main"`): | 
					
						
						|  | The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | 
					
						
						|  | allowed by Git. | 
					
						
						|  | subfolder (`str`, *optional*, defaults to `""`): | 
					
						
						|  | The subfolder location of a model file within a larger model repository on the Hub or locally. | 
					
						
						|  | weight_name (`str`, *optional*, defaults to None): | 
					
						
						|  | Name of the serialized state dict file. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cache_dir = kwargs.pop("cache_dir", None) | 
					
						
						|  | force_download = kwargs.pop("force_download", False) | 
					
						
						|  | proxies = kwargs.pop("proxies", None) | 
					
						
						|  | local_files_only = kwargs.pop("local_files_only", None) | 
					
						
						|  | token = kwargs.pop("token", None) | 
					
						
						|  | revision = kwargs.pop("revision", None) | 
					
						
						|  | subfolder = kwargs.pop("subfolder", None) | 
					
						
						|  | weight_name = kwargs.pop("weight_name", None) | 
					
						
						|  | unet_config = kwargs.pop("unet_config", None) | 
					
						
						|  | use_safetensors = kwargs.pop("use_safetensors", None) | 
					
						
						|  |  | 
					
						
						|  | allow_pickle = False | 
					
						
						|  | if use_safetensors is None: | 
					
						
						|  | use_safetensors = True | 
					
						
						|  | allow_pickle = True | 
					
						
						|  |  | 
					
						
						|  | user_agent = { | 
					
						
						|  | "file_type": "attn_procs_weights", | 
					
						
						|  | "framework": "pytorch", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | state_dict = _fetch_state_dict( | 
					
						
						|  | pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | use_safetensors=use_safetensors, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | force_download=force_download, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | token=token, | 
					
						
						|  | revision=revision, | 
					
						
						|  | subfolder=subfolder, | 
					
						
						|  | user_agent=user_agent, | 
					
						
						|  | allow_pickle=allow_pickle, | 
					
						
						|  | ) | 
					
						
						|  | is_dora_scale_present = any("dora_scale" in k for k in state_dict) | 
					
						
						|  | if is_dora_scale_present: | 
					
						
						|  | warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | 
					
						
						|  | logger.warning(warn_msg) | 
					
						
						|  | state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | 
					
						
						|  |  | 
					
						
						|  | network_alphas = None | 
					
						
						|  |  | 
					
						
						|  | if all( | 
					
						
						|  | ( | 
					
						
						|  | k.startswith("lora_te_") | 
					
						
						|  | or k.startswith("lora_unet_") | 
					
						
						|  | or k.startswith("lora_te1_") | 
					
						
						|  | or k.startswith("lora_te2_") | 
					
						
						|  | ) | 
					
						
						|  | for k in state_dict.keys() | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | if unet_config is not None: | 
					
						
						|  |  | 
					
						
						|  | state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config) | 
					
						
						|  | state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict) | 
					
						
						|  |  | 
					
						
						|  | return state_dict, network_alphas | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def load_lora_into_unet( | 
					
						
						|  | cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | This will load the LoRA layers specified in `state_dict` into `unet`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | state_dict (`dict`): | 
					
						
						|  | A standard state dict containing the lora layer parameters. The keys can either be indexed directly | 
					
						
						|  | into the unet or prefixed with an additional `unet` which can be used to distinguish between text | 
					
						
						|  | encoder lora layers. | 
					
						
						|  | network_alphas (`Dict[str, float]`): | 
					
						
						|  | The value of the network alpha used for stable learning and preventing underflow. This value has the | 
					
						
						|  | same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | 
					
						
						|  | link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | 
					
						
						|  | unet (`UNet2DConditionModel`): | 
					
						
						|  | The UNet model to load the LoRA layers into. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | """ | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | raise ValueError("PEFT backend is required for this method.") | 
					
						
						|  |  | 
					
						
						|  | if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | keys = list(state_dict.keys()) | 
					
						
						|  | only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys) | 
					
						
						|  | if not only_text_encoder: | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Loading {cls.unet_name}.") | 
					
						
						|  | unet.load_lora_adapter( | 
					
						
						|  | state_dict, | 
					
						
						|  | prefix=cls.unet_name, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=_pipeline, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def load_lora_into_text_encoder( | 
					
						
						|  | cls, | 
					
						
						|  | state_dict, | 
					
						
						|  | network_alphas, | 
					
						
						|  | text_encoder, | 
					
						
						|  | prefix=None, | 
					
						
						|  | lora_scale=1.0, | 
					
						
						|  | adapter_name=None, | 
					
						
						|  | _pipeline=None, | 
					
						
						|  | low_cpu_mem_usage=False, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | This will load the LoRA layers specified in `state_dict` into `text_encoder` | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | state_dict (`dict`): | 
					
						
						|  | A standard state dict containing the lora layer parameters. The key should be prefixed with an | 
					
						
						|  | additional `text_encoder` to distinguish between unet lora layers. | 
					
						
						|  | network_alphas (`Dict[str, float]`): | 
					
						
						|  | The value of the network alpha used for stable learning and preventing underflow. This value has the | 
					
						
						|  | same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | 
					
						
						|  | link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | 
					
						
						|  | text_encoder (`CLIPTextModel`): | 
					
						
						|  | The text encoder model to load the LoRA layers into. | 
					
						
						|  | prefix (`str`): | 
					
						
						|  | Expected prefix of the `text_encoder` in the `state_dict`. | 
					
						
						|  | lora_scale (`float`): | 
					
						
						|  | How much to scale the output of the lora linear layer before it is added with the output of the regular | 
					
						
						|  | lora layer. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | """ | 
					
						
						|  | _load_lora_into_text_encoder( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | lora_scale=lora_scale, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | prefix=prefix, | 
					
						
						|  | text_encoder_name=cls.text_encoder_name, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=_pipeline, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def save_lora_weights( | 
					
						
						|  | cls, | 
					
						
						|  | save_directory: Union[str, os.PathLike], | 
					
						
						|  | unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | is_main_process: bool = True, | 
					
						
						|  | weight_name: str = None, | 
					
						
						|  | save_function: Callable = None, | 
					
						
						|  | safe_serialization: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Save the LoRA parameters corresponding to the UNet and text encoder. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | save_directory (`str` or `os.PathLike`): | 
					
						
						|  | Directory to save LoRA parameters to. Will be created if it doesn't exist. | 
					
						
						|  | unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `unet`. | 
					
						
						|  | text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text | 
					
						
						|  | encoder LoRA state dict because it comes from 🤗 Transformers. | 
					
						
						|  | text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text | 
					
						
						|  | encoder LoRA state dict because it comes from 🤗 Transformers. | 
					
						
						|  | is_main_process (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether the process calling this is the main process or not. Useful during distributed training and you | 
					
						
						|  | need to call this function on all processes. In this case, set `is_main_process=True` only on the main | 
					
						
						|  | process to avoid race conditions. | 
					
						
						|  | save_function (`Callable`): | 
					
						
						|  | The function to use to save the state dictionary. Useful during distributed training when you need to | 
					
						
						|  | replace `torch.save` with another method. Can be configured with the environment variable | 
					
						
						|  | `DIFFUSERS_SAVE_MODE`. | 
					
						
						|  | safe_serialization (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | 
					
						
						|  | """ | 
					
						
						|  | state_dict = {} | 
					
						
						|  |  | 
					
						
						|  | if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if unet_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(unet_lora_layers, "unet")) | 
					
						
						|  |  | 
					
						
						|  | if text_encoder_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder")) | 
					
						
						|  |  | 
					
						
						|  | if text_encoder_2_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) | 
					
						
						|  |  | 
					
						
						|  | cls.write_lora_layers( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | save_directory=save_directory, | 
					
						
						|  | is_main_process=is_main_process, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | save_function=save_function, | 
					
						
						|  | safe_serialization=safe_serialization, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def fuse_lora( | 
					
						
						|  | self, | 
					
						
						|  | components: List[str] = ["unet", "text_encoder", "text_encoder_2"], | 
					
						
						|  | lora_scale: float = 1.0, | 
					
						
						|  | safe_fusing: bool = False, | 
					
						
						|  | adapter_names: Optional[List[str]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Fuses the LoRA parameters into the original parameters of the corresponding blocks. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | 
					
						
						|  | lora_scale (`float`, defaults to 1.0): | 
					
						
						|  | Controls how much to influence the outputs with the LoRA parameters. | 
					
						
						|  | safe_fusing (`bool`, defaults to `False`): | 
					
						
						|  | Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | 
					
						
						|  | adapter_names (`List[str]`, *optional*): | 
					
						
						|  | Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```py | 
					
						
						|  | from diffusers import DiffusionPipeline | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | pipeline = DiffusionPipeline.from_pretrained( | 
					
						
						|  | "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | 
					
						
						|  | ).to("cuda") | 
					
						
						|  | pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | 
					
						
						|  | pipeline.fuse_lora(lora_scale=0.7) | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  | super().fuse_lora( | 
					
						
						|  | components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def unfuse_lora(self, components: List[str] = ["unet", "text_encoder", "text_encoder_2"], **kwargs): | 
					
						
						|  | r""" | 
					
						
						|  | Reverses the effect of | 
					
						
						|  | [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | 
					
						
						|  | unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | 
					
						
						|  | unfuse_text_encoder (`bool`, defaults to `True`): | 
					
						
						|  | Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the | 
					
						
						|  | LoRA parameters then it won't have any effect. | 
					
						
						|  | """ | 
					
						
						|  | super().unfuse_lora(components=components) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SD3LoraLoaderMixin(LoraBaseMixin): | 
					
						
						|  | r""" | 
					
						
						|  | Load LoRA layers into [`SD3Transformer2DModel`], | 
					
						
						|  | [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and | 
					
						
						|  | [`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection). | 
					
						
						|  |  | 
					
						
						|  | Specific to [`StableDiffusion3Pipeline`]. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _lora_loadable_modules = ["transformer", "text_encoder", "text_encoder_2"] | 
					
						
						|  | transformer_name = TRANSFORMER_NAME | 
					
						
						|  | text_encoder_name = TEXT_ENCODER_NAME | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | @validate_hf_hub_args | 
					
						
						|  | def lora_state_dict( | 
					
						
						|  | cls, | 
					
						
						|  | pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Return state dict for lora weights and the network alphas. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | We support loading A1111 formatted LoRA checkpoints in a limited capacity. | 
					
						
						|  |  | 
					
						
						|  | This function is experimental and might change in the future. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | Can be either: | 
					
						
						|  |  | 
					
						
						|  | - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | 
					
						
						|  | the Hub. | 
					
						
						|  | - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | 
					
						
						|  | with [`ModelMixin.save_pretrained`]. | 
					
						
						|  | - A [torch state | 
					
						
						|  | dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | 
					
						
						|  |  | 
					
						
						|  | cache_dir (`Union[str, os.PathLike]`, *optional*): | 
					
						
						|  | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | 
					
						
						|  | is not used. | 
					
						
						|  | force_download (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not to force the (re-)download of the model weights and configuration files, overriding the | 
					
						
						|  | cached versions if they exist. | 
					
						
						|  |  | 
					
						
						|  | proxies (`Dict[str, str]`, *optional*): | 
					
						
						|  | A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | 
					
						
						|  | 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | 
					
						
						|  | local_files_only (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to only load local model weights and configuration files or not. If set to `True`, the model | 
					
						
						|  | won't be downloaded from the Hub. | 
					
						
						|  | token (`str` or *bool*, *optional*): | 
					
						
						|  | The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | 
					
						
						|  | `diffusers-cli login` (stored in `~/.huggingface`) is used. | 
					
						
						|  | revision (`str`, *optional*, defaults to `"main"`): | 
					
						
						|  | The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | 
					
						
						|  | allowed by Git. | 
					
						
						|  | subfolder (`str`, *optional*, defaults to `""`): | 
					
						
						|  | The subfolder location of a model file within a larger model repository on the Hub or locally. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cache_dir = kwargs.pop("cache_dir", None) | 
					
						
						|  | force_download = kwargs.pop("force_download", False) | 
					
						
						|  | proxies = kwargs.pop("proxies", None) | 
					
						
						|  | local_files_only = kwargs.pop("local_files_only", None) | 
					
						
						|  | token = kwargs.pop("token", None) | 
					
						
						|  | revision = kwargs.pop("revision", None) | 
					
						
						|  | subfolder = kwargs.pop("subfolder", None) | 
					
						
						|  | weight_name = kwargs.pop("weight_name", None) | 
					
						
						|  | use_safetensors = kwargs.pop("use_safetensors", None) | 
					
						
						|  |  | 
					
						
						|  | allow_pickle = False | 
					
						
						|  | if use_safetensors is None: | 
					
						
						|  | use_safetensors = True | 
					
						
						|  | allow_pickle = True | 
					
						
						|  |  | 
					
						
						|  | user_agent = { | 
					
						
						|  | "file_type": "attn_procs_weights", | 
					
						
						|  | "framework": "pytorch", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | state_dict = _fetch_state_dict( | 
					
						
						|  | pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | use_safetensors=use_safetensors, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | force_download=force_download, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | token=token, | 
					
						
						|  | revision=revision, | 
					
						
						|  | subfolder=subfolder, | 
					
						
						|  | user_agent=user_agent, | 
					
						
						|  | allow_pickle=allow_pickle, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | is_dora_scale_present = any("dora_scale" in k for k in state_dict) | 
					
						
						|  | if is_dora_scale_present: | 
					
						
						|  | warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | 
					
						
						|  | logger.warning(warn_msg) | 
					
						
						|  | state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | 
					
						
						|  |  | 
					
						
						|  | return state_dict | 
					
						
						|  |  | 
					
						
						|  | def load_lora_weights( | 
					
						
						|  | self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and | 
					
						
						|  | `self.text_encoder`. | 
					
						
						|  |  | 
					
						
						|  | All kwargs are forwarded to `self.lora_state_dict`. | 
					
						
						|  |  | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is | 
					
						
						|  | loaded. | 
					
						
						|  |  | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state | 
					
						
						|  | dict is loaded into `self.transformer`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | kwargs (`dict`, *optional*): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | """ | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | raise ValueError("PEFT backend is required for this method.") | 
					
						
						|  |  | 
					
						
						|  | low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | 
					
						
						|  | if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(pretrained_model_name_or_path_or_dict, dict): | 
					
						
						|  | pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | is_correct_format = all("lora" in key for key in state_dict.keys()) | 
					
						
						|  | if not is_correct_format: | 
					
						
						|  | raise ValueError("Invalid LoRA checkpoint.") | 
					
						
						|  |  | 
					
						
						|  | transformer_state_dict = {k: v for k, v in state_dict.items() if "transformer." in k} | 
					
						
						|  | if len(transformer_state_dict) > 0: | 
					
						
						|  | self.load_lora_into_transformer( | 
					
						
						|  | state_dict, | 
					
						
						|  | transformer=getattr(self, self.transformer_name) | 
					
						
						|  | if not hasattr(self, "transformer") | 
					
						
						|  | else self.transformer, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=self, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} | 
					
						
						|  | if len(text_encoder_state_dict) > 0: | 
					
						
						|  | self.load_lora_into_text_encoder( | 
					
						
						|  | text_encoder_state_dict, | 
					
						
						|  | network_alphas=None, | 
					
						
						|  | text_encoder=self.text_encoder, | 
					
						
						|  | prefix="text_encoder", | 
					
						
						|  | lora_scale=self.lora_scale, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=self, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} | 
					
						
						|  | if len(text_encoder_2_state_dict) > 0: | 
					
						
						|  | self.load_lora_into_text_encoder( | 
					
						
						|  | text_encoder_2_state_dict, | 
					
						
						|  | network_alphas=None, | 
					
						
						|  | text_encoder=self.text_encoder_2, | 
					
						
						|  | prefix="text_encoder_2", | 
					
						
						|  | lora_scale=self.lora_scale, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=self, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def load_lora_into_transformer( | 
					
						
						|  | cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | This will load the LoRA layers specified in `state_dict` into `transformer`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | state_dict (`dict`): | 
					
						
						|  | A standard state dict containing the lora layer parameters. The keys can either be indexed directly | 
					
						
						|  | into the unet or prefixed with an additional `unet` which can be used to distinguish between text | 
					
						
						|  | encoder lora layers. | 
					
						
						|  | transformer (`SD3Transformer2DModel`): | 
					
						
						|  | The Transformer model to load the LoRA layers into. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | """ | 
					
						
						|  | if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Loading {cls.transformer_name}.") | 
					
						
						|  | transformer.load_lora_adapter( | 
					
						
						|  | state_dict, | 
					
						
						|  | network_alphas=None, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=_pipeline, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def load_lora_into_text_encoder( | 
					
						
						|  | cls, | 
					
						
						|  | state_dict, | 
					
						
						|  | network_alphas, | 
					
						
						|  | text_encoder, | 
					
						
						|  | prefix=None, | 
					
						
						|  | lora_scale=1.0, | 
					
						
						|  | adapter_name=None, | 
					
						
						|  | _pipeline=None, | 
					
						
						|  | low_cpu_mem_usage=False, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | This will load the LoRA layers specified in `state_dict` into `text_encoder` | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | state_dict (`dict`): | 
					
						
						|  | A standard state dict containing the lora layer parameters. The key should be prefixed with an | 
					
						
						|  | additional `text_encoder` to distinguish between unet lora layers. | 
					
						
						|  | network_alphas (`Dict[str, float]`): | 
					
						
						|  | The value of the network alpha used for stable learning and preventing underflow. This value has the | 
					
						
						|  | same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | 
					
						
						|  | link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | 
					
						
						|  | text_encoder (`CLIPTextModel`): | 
					
						
						|  | The text encoder model to load the LoRA layers into. | 
					
						
						|  | prefix (`str`): | 
					
						
						|  | Expected prefix of the `text_encoder` in the `state_dict`. | 
					
						
						|  | lora_scale (`float`): | 
					
						
						|  | How much to scale the output of the lora linear layer before it is added with the output of the regular | 
					
						
						|  | lora layer. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | """ | 
					
						
						|  | _load_lora_into_text_encoder( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | lora_scale=lora_scale, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | prefix=prefix, | 
					
						
						|  | text_encoder_name=cls.text_encoder_name, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=_pipeline, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def save_lora_weights( | 
					
						
						|  | cls, | 
					
						
						|  | save_directory: Union[str, os.PathLike], | 
					
						
						|  | transformer_lora_layers: Dict[str, torch.nn.Module] = None, | 
					
						
						|  | text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | is_main_process: bool = True, | 
					
						
						|  | weight_name: str = None, | 
					
						
						|  | save_function: Callable = None, | 
					
						
						|  | safe_serialization: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Save the LoRA parameters corresponding to the UNet and text encoder. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | save_directory (`str` or `os.PathLike`): | 
					
						
						|  | Directory to save LoRA parameters to. Will be created if it doesn't exist. | 
					
						
						|  | transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `transformer`. | 
					
						
						|  | text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text | 
					
						
						|  | encoder LoRA state dict because it comes from 🤗 Transformers. | 
					
						
						|  | text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text | 
					
						
						|  | encoder LoRA state dict because it comes from 🤗 Transformers. | 
					
						
						|  | is_main_process (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether the process calling this is the main process or not. Useful during distributed training and you | 
					
						
						|  | need to call this function on all processes. In this case, set `is_main_process=True` only on the main | 
					
						
						|  | process to avoid race conditions. | 
					
						
						|  | save_function (`Callable`): | 
					
						
						|  | The function to use to save the state dictionary. Useful during distributed training when you need to | 
					
						
						|  | replace `torch.save` with another method. Can be configured with the environment variable | 
					
						
						|  | `DIFFUSERS_SAVE_MODE`. | 
					
						
						|  | safe_serialization (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | 
					
						
						|  | """ | 
					
						
						|  | state_dict = {} | 
					
						
						|  |  | 
					
						
						|  | if not (transformer_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You must pass at least one of `transformer_lora_layers`, `text_encoder_lora_layers`, `text_encoder_2_lora_layers`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if transformer_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | 
					
						
						|  |  | 
					
						
						|  | if text_encoder_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder")) | 
					
						
						|  |  | 
					
						
						|  | if text_encoder_2_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cls.write_lora_layers( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | save_directory=save_directory, | 
					
						
						|  | is_main_process=is_main_process, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | save_function=save_function, | 
					
						
						|  | safe_serialization=safe_serialization, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def fuse_lora( | 
					
						
						|  | self, | 
					
						
						|  | components: List[str] = ["transformer", "text_encoder", "text_encoder_2"], | 
					
						
						|  | lora_scale: float = 1.0, | 
					
						
						|  | safe_fusing: bool = False, | 
					
						
						|  | adapter_names: Optional[List[str]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Fuses the LoRA parameters into the original parameters of the corresponding blocks. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | 
					
						
						|  | lora_scale (`float`, defaults to 1.0): | 
					
						
						|  | Controls how much to influence the outputs with the LoRA parameters. | 
					
						
						|  | safe_fusing (`bool`, defaults to `False`): | 
					
						
						|  | Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | 
					
						
						|  | adapter_names (`List[str]`, *optional*): | 
					
						
						|  | Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```py | 
					
						
						|  | from diffusers import DiffusionPipeline | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | pipeline = DiffusionPipeline.from_pretrained( | 
					
						
						|  | "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | 
					
						
						|  | ).to("cuda") | 
					
						
						|  | pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | 
					
						
						|  | pipeline.fuse_lora(lora_scale=0.7) | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  | super().fuse_lora( | 
					
						
						|  | components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder", "text_encoder_2"], **kwargs): | 
					
						
						|  | r""" | 
					
						
						|  | Reverses the effect of | 
					
						
						|  | [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | 
					
						
						|  | unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | 
					
						
						|  | unfuse_text_encoder (`bool`, defaults to `True`): | 
					
						
						|  | Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the | 
					
						
						|  | LoRA parameters then it won't have any effect. | 
					
						
						|  | """ | 
					
						
						|  | super().unfuse_lora(components=components) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FluxLoraLoaderMixin(LoraBaseMixin): | 
					
						
						|  | r""" | 
					
						
						|  | Load LoRA layers into [`FluxTransformer2DModel`], | 
					
						
						|  | [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel). | 
					
						
						|  |  | 
					
						
						|  | Specific to [`StableDiffusion3Pipeline`]. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _lora_loadable_modules = ["transformer", "text_encoder"] | 
					
						
						|  | transformer_name = TRANSFORMER_NAME | 
					
						
						|  | text_encoder_name = TEXT_ENCODER_NAME | 
					
						
						|  | _control_lora_supported_norm_keys = ["norm_q", "norm_k", "norm_added_q", "norm_added_k"] | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | @validate_hf_hub_args | 
					
						
						|  | def lora_state_dict( | 
					
						
						|  | cls, | 
					
						
						|  | pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | 
					
						
						|  | return_alphas: bool = False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Return state dict for lora weights and the network alphas. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | We support loading A1111 formatted LoRA checkpoints in a limited capacity. | 
					
						
						|  |  | 
					
						
						|  | This function is experimental and might change in the future. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | Can be either: | 
					
						
						|  |  | 
					
						
						|  | - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | 
					
						
						|  | the Hub. | 
					
						
						|  | - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | 
					
						
						|  | with [`ModelMixin.save_pretrained`]. | 
					
						
						|  | - A [torch state | 
					
						
						|  | dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | 
					
						
						|  |  | 
					
						
						|  | cache_dir (`Union[str, os.PathLike]`, *optional*): | 
					
						
						|  | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | 
					
						
						|  | is not used. | 
					
						
						|  | force_download (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not to force the (re-)download of the model weights and configuration files, overriding the | 
					
						
						|  | cached versions if they exist. | 
					
						
						|  |  | 
					
						
						|  | proxies (`Dict[str, str]`, *optional*): | 
					
						
						|  | A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | 
					
						
						|  | 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | 
					
						
						|  | local_files_only (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to only load local model weights and configuration files or not. If set to `True`, the model | 
					
						
						|  | won't be downloaded from the Hub. | 
					
						
						|  | token (`str` or *bool*, *optional*): | 
					
						
						|  | The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | 
					
						
						|  | `diffusers-cli login` (stored in `~/.huggingface`) is used. | 
					
						
						|  | revision (`str`, *optional*, defaults to `"main"`): | 
					
						
						|  | The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | 
					
						
						|  | allowed by Git. | 
					
						
						|  | subfolder (`str`, *optional*, defaults to `""`): | 
					
						
						|  | The subfolder location of a model file within a larger model repository on the Hub or locally. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cache_dir = kwargs.pop("cache_dir", None) | 
					
						
						|  | force_download = kwargs.pop("force_download", False) | 
					
						
						|  | proxies = kwargs.pop("proxies", None) | 
					
						
						|  | local_files_only = kwargs.pop("local_files_only", None) | 
					
						
						|  | token = kwargs.pop("token", None) | 
					
						
						|  | revision = kwargs.pop("revision", None) | 
					
						
						|  | subfolder = kwargs.pop("subfolder", None) | 
					
						
						|  | weight_name = kwargs.pop("weight_name", None) | 
					
						
						|  | use_safetensors = kwargs.pop("use_safetensors", None) | 
					
						
						|  |  | 
					
						
						|  | allow_pickle = False | 
					
						
						|  | if use_safetensors is None: | 
					
						
						|  | use_safetensors = True | 
					
						
						|  | allow_pickle = True | 
					
						
						|  |  | 
					
						
						|  | user_agent = { | 
					
						
						|  | "file_type": "attn_procs_weights", | 
					
						
						|  | "framework": "pytorch", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | state_dict = _fetch_state_dict( | 
					
						
						|  | pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | use_safetensors=use_safetensors, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | force_download=force_download, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | token=token, | 
					
						
						|  | revision=revision, | 
					
						
						|  | subfolder=subfolder, | 
					
						
						|  | user_agent=user_agent, | 
					
						
						|  | allow_pickle=allow_pickle, | 
					
						
						|  | ) | 
					
						
						|  | is_dora_scale_present = any("dora_scale" in k for k in state_dict) | 
					
						
						|  | if is_dora_scale_present: | 
					
						
						|  | warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | 
					
						
						|  | logger.warning(warn_msg) | 
					
						
						|  | state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_kohya = any(".lora_down.weight" in k for k in state_dict) | 
					
						
						|  | if is_kohya: | 
					
						
						|  | state_dict = _convert_kohya_flux_lora_to_diffusers(state_dict) | 
					
						
						|  |  | 
					
						
						|  | return (state_dict, None) if return_alphas else state_dict | 
					
						
						|  |  | 
					
						
						|  | is_xlabs = any("processor" in k for k in state_dict) | 
					
						
						|  | if is_xlabs: | 
					
						
						|  | state_dict = _convert_xlabs_flux_lora_to_diffusers(state_dict) | 
					
						
						|  |  | 
					
						
						|  | return (state_dict, None) if return_alphas else state_dict | 
					
						
						|  |  | 
					
						
						|  | is_bfl_control = any("query_norm.scale" in k for k in state_dict) | 
					
						
						|  | if is_bfl_control: | 
					
						
						|  | state_dict = _convert_bfl_flux_control_lora_to_diffusers(state_dict) | 
					
						
						|  | return (state_dict, None) if return_alphas else state_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | keys = list(state_dict.keys()) | 
					
						
						|  | network_alphas = {} | 
					
						
						|  | for k in keys: | 
					
						
						|  | if "alpha" in k: | 
					
						
						|  | alpha_value = state_dict.get(k) | 
					
						
						|  | if (torch.is_tensor(alpha_value) and torch.is_floating_point(alpha_value)) or isinstance( | 
					
						
						|  | alpha_value, float | 
					
						
						|  | ): | 
					
						
						|  | network_alphas[k] = state_dict.pop(k) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The alpha key ({k}) seems to be incorrect. If you think this error is unexpected, please open as issue." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if return_alphas: | 
					
						
						|  | return state_dict, network_alphas | 
					
						
						|  | else: | 
					
						
						|  | return state_dict | 
					
						
						|  |  | 
					
						
						|  | def load_lora_weights( | 
					
						
						|  | self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and | 
					
						
						|  | `self.text_encoder`. | 
					
						
						|  |  | 
					
						
						|  | All kwargs are forwarded to `self.lora_state_dict`. | 
					
						
						|  |  | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is | 
					
						
						|  | loaded. | 
					
						
						|  |  | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state | 
					
						
						|  | dict is loaded into `self.transformer`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | kwargs (`dict`, *optional*): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | `Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | """ | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | raise ValueError("PEFT backend is required for this method.") | 
					
						
						|  |  | 
					
						
						|  | low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | 
					
						
						|  | if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(pretrained_model_name_or_path_or_dict, dict): | 
					
						
						|  | pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_dict, network_alphas = self.lora_state_dict( | 
					
						
						|  | pretrained_model_name_or_path_or_dict, return_alphas=True, **kwargs | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | has_lora_keys = any("lora" in key for key in state_dict.keys()) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | has_norm_keys = any( | 
					
						
						|  | norm_key in key for key in state_dict.keys() for norm_key in self._control_lora_supported_norm_keys | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not (has_lora_keys or has_norm_keys): | 
					
						
						|  | raise ValueError("Invalid LoRA checkpoint.") | 
					
						
						|  |  | 
					
						
						|  | transformer_lora_state_dict = { | 
					
						
						|  | k: state_dict.pop(k) for k in list(state_dict.keys()) if "transformer." in k and "lora" in k | 
					
						
						|  | } | 
					
						
						|  | transformer_norm_state_dict = { | 
					
						
						|  | k: state_dict.pop(k) | 
					
						
						|  | for k in list(state_dict.keys()) | 
					
						
						|  | if "transformer." in k and any(norm_key in k for norm_key in self._control_lora_supported_norm_keys) | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer | 
					
						
						|  | has_param_with_expanded_shape = self._maybe_expand_transformer_param_shape_or_error_( | 
					
						
						|  | transformer, transformer_lora_state_dict, transformer_norm_state_dict | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if has_param_with_expanded_shape: | 
					
						
						|  | logger.info( | 
					
						
						|  | "The LoRA weights contain parameters that have different shapes that expected by the transformer. " | 
					
						
						|  | "As a result, the state_dict of the transformer has been expanded to match the LoRA parameter shapes. " | 
					
						
						|  | "To get a comprehensive list of parameter names that were modified, enable debug logging." | 
					
						
						|  | ) | 
					
						
						|  | transformer_lora_state_dict = self._maybe_expand_lora_state_dict( | 
					
						
						|  | transformer=transformer, lora_state_dict=transformer_lora_state_dict | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if len(transformer_lora_state_dict) > 0: | 
					
						
						|  | self.load_lora_into_transformer( | 
					
						
						|  | transformer_lora_state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | transformer=transformer, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=self, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if len(transformer_norm_state_dict) > 0: | 
					
						
						|  | transformer._transformer_norm_layers = self._load_norm_into_transformer( | 
					
						
						|  | transformer_norm_state_dict, | 
					
						
						|  | transformer=transformer, | 
					
						
						|  | discard_original_layers=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} | 
					
						
						|  | if len(text_encoder_state_dict) > 0: | 
					
						
						|  | self.load_lora_into_text_encoder( | 
					
						
						|  | text_encoder_state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | text_encoder=self.text_encoder, | 
					
						
						|  | prefix="text_encoder", | 
					
						
						|  | lora_scale=self.lora_scale, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=self, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def load_lora_into_transformer( | 
					
						
						|  | cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | This will load the LoRA layers specified in `state_dict` into `transformer`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | state_dict (`dict`): | 
					
						
						|  | A standard state dict containing the lora layer parameters. The keys can either be indexed directly | 
					
						
						|  | into the unet or prefixed with an additional `unet` which can be used to distinguish between text | 
					
						
						|  | encoder lora layers. | 
					
						
						|  | network_alphas (`Dict[str, float]`): | 
					
						
						|  | The value of the network alpha used for stable learning and preventing underflow. This value has the | 
					
						
						|  | same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | 
					
						
						|  | link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | 
					
						
						|  | transformer (`FluxTransformer2DModel`): | 
					
						
						|  | The Transformer model to load the LoRA layers into. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | """ | 
					
						
						|  | if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | keys = list(state_dict.keys()) | 
					
						
						|  | transformer_present = any(key.startswith(cls.transformer_name) for key in keys) | 
					
						
						|  | if transformer_present: | 
					
						
						|  | logger.info(f"Loading {cls.transformer_name}.") | 
					
						
						|  | transformer.load_lora_adapter( | 
					
						
						|  | state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=_pipeline, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def _load_norm_into_transformer( | 
					
						
						|  | cls, | 
					
						
						|  | state_dict, | 
					
						
						|  | transformer, | 
					
						
						|  | prefix=None, | 
					
						
						|  | discard_original_layers=False, | 
					
						
						|  | ) -> Dict[str, torch.Tensor]: | 
					
						
						|  |  | 
					
						
						|  | prefix = prefix or cls.transformer_name | 
					
						
						|  | for key in list(state_dict.keys()): | 
					
						
						|  | if key.split(".")[0] == prefix: | 
					
						
						|  | state_dict[key[len(f"{prefix}.") :]] = state_dict.pop(key) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | transformer_state_dict = transformer.state_dict() | 
					
						
						|  | transformer_keys = set(transformer_state_dict.keys()) | 
					
						
						|  | state_dict_keys = set(state_dict.keys()) | 
					
						
						|  | extra_keys = list(state_dict_keys - transformer_keys) | 
					
						
						|  |  | 
					
						
						|  | if extra_keys: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"Unsupported keys found in state dict when trying to load normalization layers into the transformer. The following keys will be ignored:\n{extra_keys}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | for key in extra_keys: | 
					
						
						|  | state_dict.pop(key) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | overwritten_layers_state_dict = {} | 
					
						
						|  | if not discard_original_layers: | 
					
						
						|  | for key in state_dict.keys(): | 
					
						
						|  | overwritten_layers_state_dict[key] = transformer_state_dict[key].clone() | 
					
						
						|  |  | 
					
						
						|  | logger.info( | 
					
						
						|  | "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will directly update the state_dict of the transformer " | 
					
						
						|  | 'as opposed to the LoRA layers that will co-exist separately until the "fuse_lora()" method is called. That is to say, the normalization layers will always be directly ' | 
					
						
						|  | "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed. This might also have implications when dealing with multiple LoRAs. " | 
					
						
						|  | "If you notice something unexpected, please open an issue: https://github.com/huggingface/diffusers/issues." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | incompatible_keys = transformer.load_state_dict(state_dict, strict=False) | 
					
						
						|  | unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if unexpected_keys: | 
					
						
						|  | if any(norm_key in k for k in unexpected_keys for norm_key in cls._control_lora_supported_norm_keys): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Found {unexpected_keys} as unexpected keys while trying to load norm layers into the transformer." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return overwritten_layers_state_dict | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def load_lora_into_text_encoder( | 
					
						
						|  | cls, | 
					
						
						|  | state_dict, | 
					
						
						|  | network_alphas, | 
					
						
						|  | text_encoder, | 
					
						
						|  | prefix=None, | 
					
						
						|  | lora_scale=1.0, | 
					
						
						|  | adapter_name=None, | 
					
						
						|  | _pipeline=None, | 
					
						
						|  | low_cpu_mem_usage=False, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | This will load the LoRA layers specified in `state_dict` into `text_encoder` | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | state_dict (`dict`): | 
					
						
						|  | A standard state dict containing the lora layer parameters. The key should be prefixed with an | 
					
						
						|  | additional `text_encoder` to distinguish between unet lora layers. | 
					
						
						|  | network_alphas (`Dict[str, float]`): | 
					
						
						|  | The value of the network alpha used for stable learning and preventing underflow. This value has the | 
					
						
						|  | same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | 
					
						
						|  | link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | 
					
						
						|  | text_encoder (`CLIPTextModel`): | 
					
						
						|  | The text encoder model to load the LoRA layers into. | 
					
						
						|  | prefix (`str`): | 
					
						
						|  | Expected prefix of the `text_encoder` in the `state_dict`. | 
					
						
						|  | lora_scale (`float`): | 
					
						
						|  | How much to scale the output of the lora linear layer before it is added with the output of the regular | 
					
						
						|  | lora layer. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | """ | 
					
						
						|  | _load_lora_into_text_encoder( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | lora_scale=lora_scale, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | prefix=prefix, | 
					
						
						|  | text_encoder_name=cls.text_encoder_name, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=_pipeline, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def save_lora_weights( | 
					
						
						|  | cls, | 
					
						
						|  | save_directory: Union[str, os.PathLike], | 
					
						
						|  | transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, | 
					
						
						|  | is_main_process: bool = True, | 
					
						
						|  | weight_name: str = None, | 
					
						
						|  | save_function: Callable = None, | 
					
						
						|  | safe_serialization: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Save the LoRA parameters corresponding to the UNet and text encoder. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | save_directory (`str` or `os.PathLike`): | 
					
						
						|  | Directory to save LoRA parameters to. Will be created if it doesn't exist. | 
					
						
						|  | transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `transformer`. | 
					
						
						|  | text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text | 
					
						
						|  | encoder LoRA state dict because it comes from 🤗 Transformers. | 
					
						
						|  | is_main_process (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether the process calling this is the main process or not. Useful during distributed training and you | 
					
						
						|  | need to call this function on all processes. In this case, set `is_main_process=True` only on the main | 
					
						
						|  | process to avoid race conditions. | 
					
						
						|  | save_function (`Callable`): | 
					
						
						|  | The function to use to save the state dictionary. Useful during distributed training when you need to | 
					
						
						|  | replace `torch.save` with another method. Can be configured with the environment variable | 
					
						
						|  | `DIFFUSERS_SAVE_MODE`. | 
					
						
						|  | safe_serialization (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | 
					
						
						|  | """ | 
					
						
						|  | state_dict = {} | 
					
						
						|  |  | 
					
						
						|  | if not (transformer_lora_layers or text_encoder_lora_layers): | 
					
						
						|  | raise ValueError("You must pass at least one of `transformer_lora_layers` and `text_encoder_lora_layers`.") | 
					
						
						|  |  | 
					
						
						|  | if transformer_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | 
					
						
						|  |  | 
					
						
						|  | if text_encoder_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cls.write_lora_layers( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | save_directory=save_directory, | 
					
						
						|  | is_main_process=is_main_process, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | save_function=save_function, | 
					
						
						|  | safe_serialization=safe_serialization, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def fuse_lora( | 
					
						
						|  | self, | 
					
						
						|  | components: List[str] = ["transformer"], | 
					
						
						|  | lora_scale: float = 1.0, | 
					
						
						|  | safe_fusing: bool = False, | 
					
						
						|  | adapter_names: Optional[List[str]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Fuses the LoRA parameters into the original parameters of the corresponding blocks. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | 
					
						
						|  | lora_scale (`float`, defaults to 1.0): | 
					
						
						|  | Controls how much to influence the outputs with the LoRA parameters. | 
					
						
						|  | safe_fusing (`bool`, defaults to `False`): | 
					
						
						|  | Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | 
					
						
						|  | adapter_names (`List[str]`, *optional*): | 
					
						
						|  | Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```py | 
					
						
						|  | from diffusers import DiffusionPipeline | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | pipeline = DiffusionPipeline.from_pretrained( | 
					
						
						|  | "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | 
					
						
						|  | ).to("cuda") | 
					
						
						|  | pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | 
					
						
						|  | pipeline.fuse_lora(lora_scale=0.7) | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer | 
					
						
						|  | if ( | 
					
						
						|  | hasattr(transformer, "_transformer_norm_layers") | 
					
						
						|  | and isinstance(transformer._transformer_norm_layers, dict) | 
					
						
						|  | and len(transformer._transformer_norm_layers.keys()) > 0 | 
					
						
						|  | ): | 
					
						
						|  | logger.info( | 
					
						
						|  | "The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will be directly updated the state_dict of the transformer " | 
					
						
						|  | "as opposed to the LoRA layers that will co-exist separately until the 'fuse_lora()' method is called. That is to say, the normalization layers will always be directly " | 
					
						
						|  | "fused into the transformer and can only be unfused if `discard_original_layers=True` is passed." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | super().fuse_lora( | 
					
						
						|  | components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs): | 
					
						
						|  | r""" | 
					
						
						|  | Reverses the effect of | 
					
						
						|  | [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | 
					
						
						|  | """ | 
					
						
						|  | transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer | 
					
						
						|  | if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers: | 
					
						
						|  | transformer.load_state_dict(transformer._transformer_norm_layers, strict=False) | 
					
						
						|  |  | 
					
						
						|  | super().unfuse_lora(components=components) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def unload_lora_weights(self, reset_to_overwritten_params=False): | 
					
						
						|  | """ | 
					
						
						|  | Unloads the LoRA parameters. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | reset_to_overwritten_params (`bool`, defaults to `False`): Whether to reset the LoRA-loaded modules | 
					
						
						|  | to their original params. Refer to the [Flux | 
					
						
						|  | documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) to learn more. | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> # Assuming `pipeline` is already loaded with the LoRA parameters. | 
					
						
						|  | >>> pipeline.unload_lora_weights() | 
					
						
						|  | >>> ... | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  | super().unload_lora_weights() | 
					
						
						|  |  | 
					
						
						|  | transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer | 
					
						
						|  | if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers: | 
					
						
						|  | transformer.load_state_dict(transformer._transformer_norm_layers, strict=False) | 
					
						
						|  | transformer._transformer_norm_layers = None | 
					
						
						|  |  | 
					
						
						|  | if reset_to_overwritten_params and getattr(transformer, "_overwritten_params", None) is not None: | 
					
						
						|  | overwritten_params = transformer._overwritten_params | 
					
						
						|  | module_names = set() | 
					
						
						|  |  | 
					
						
						|  | for param_name in overwritten_params: | 
					
						
						|  | if param_name.endswith(".weight"): | 
					
						
						|  | module_names.add(param_name.replace(".weight", "")) | 
					
						
						|  |  | 
					
						
						|  | for name, module in transformer.named_modules(): | 
					
						
						|  | if isinstance(module, torch.nn.Linear) and name in module_names: | 
					
						
						|  | module_weight = module.weight.data | 
					
						
						|  | module_bias = module.bias.data if module.bias is not None else None | 
					
						
						|  | bias = module_bias is not None | 
					
						
						|  |  | 
					
						
						|  | parent_module_name, _, current_module_name = name.rpartition(".") | 
					
						
						|  | parent_module = transformer.get_submodule(parent_module_name) | 
					
						
						|  |  | 
					
						
						|  | current_param_weight = overwritten_params[f"{name}.weight"] | 
					
						
						|  | in_features, out_features = current_param_weight.shape[1], current_param_weight.shape[0] | 
					
						
						|  | with torch.device("meta"): | 
					
						
						|  | original_module = torch.nn.Linear( | 
					
						
						|  | in_features, | 
					
						
						|  | out_features, | 
					
						
						|  | bias=bias, | 
					
						
						|  | dtype=module_weight.dtype, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | tmp_state_dict = {"weight": current_param_weight} | 
					
						
						|  | if module_bias is not None: | 
					
						
						|  | tmp_state_dict.update({"bias": overwritten_params[f"{name}.bias"]}) | 
					
						
						|  | original_module.load_state_dict(tmp_state_dict, assign=True, strict=True) | 
					
						
						|  | setattr(parent_module, current_module_name, original_module) | 
					
						
						|  |  | 
					
						
						|  | del tmp_state_dict | 
					
						
						|  |  | 
					
						
						|  | if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX: | 
					
						
						|  | attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name] | 
					
						
						|  | new_value = int(current_param_weight.shape[1]) | 
					
						
						|  | old_value = getattr(transformer.config, attribute_name) | 
					
						
						|  | setattr(transformer.config, attribute_name, new_value) | 
					
						
						|  | logger.info( | 
					
						
						|  | f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def _maybe_expand_transformer_param_shape_or_error_( | 
					
						
						|  | cls, | 
					
						
						|  | transformer: torch.nn.Module, | 
					
						
						|  | lora_state_dict=None, | 
					
						
						|  | norm_state_dict=None, | 
					
						
						|  | prefix=None, | 
					
						
						|  | ) -> bool: | 
					
						
						|  | """ | 
					
						
						|  | Control LoRA expands the shape of the input layer from (3072, 64) to (3072, 128). This method handles that and | 
					
						
						|  | generalizes things a bit so that any parameter that needs expansion receives appropriate treatement. | 
					
						
						|  | """ | 
					
						
						|  | state_dict = {} | 
					
						
						|  | if lora_state_dict is not None: | 
					
						
						|  | state_dict.update(lora_state_dict) | 
					
						
						|  | if norm_state_dict is not None: | 
					
						
						|  | state_dict.update(norm_state_dict) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prefix = prefix or cls.transformer_name | 
					
						
						|  | for key in list(state_dict.keys()): | 
					
						
						|  | if key.split(".")[0] == prefix: | 
					
						
						|  | state_dict[key[len(f"{prefix}.") :]] = state_dict.pop(key) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | has_param_with_shape_update = False | 
					
						
						|  | overwritten_params = {} | 
					
						
						|  |  | 
					
						
						|  | is_peft_loaded = getattr(transformer, "peft_config", None) is not None | 
					
						
						|  | for name, module in transformer.named_modules(): | 
					
						
						|  | if isinstance(module, torch.nn.Linear): | 
					
						
						|  | module_weight = module.weight.data | 
					
						
						|  | module_bias = module.bias.data if module.bias is not None else None | 
					
						
						|  | bias = module_bias is not None | 
					
						
						|  |  | 
					
						
						|  | lora_base_name = name.replace(".base_layer", "") if is_peft_loaded else name | 
					
						
						|  | lora_A_weight_name = f"{lora_base_name}.lora_A.weight" | 
					
						
						|  | lora_B_weight_name = f"{lora_base_name}.lora_B.weight" | 
					
						
						|  | if lora_A_weight_name not in state_dict: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | in_features = state_dict[lora_A_weight_name].shape[1] | 
					
						
						|  | out_features = state_dict[lora_B_weight_name].shape[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | module_weight_shape = cls._calculate_module_shape(model=transformer, base_module=module) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if tuple(module_weight_shape) == (out_features, in_features): | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | module_out_features, module_in_features = module_weight.shape | 
					
						
						|  | debug_message = "" | 
					
						
						|  | if in_features > module_in_features: | 
					
						
						|  | debug_message += ( | 
					
						
						|  | f'Expanding the nn.Linear input/output features for module="{name}" because the provided LoRA ' | 
					
						
						|  | f"checkpoint contains higher number of features than expected. The number of input_features will be " | 
					
						
						|  | f"expanded from {module_in_features} to {in_features}" | 
					
						
						|  | ) | 
					
						
						|  | if out_features > module_out_features: | 
					
						
						|  | debug_message += ( | 
					
						
						|  | ", and the number of output features will be " | 
					
						
						|  | f"expanded from {module_out_features} to {out_features}." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | debug_message += "." | 
					
						
						|  | if debug_message: | 
					
						
						|  | logger.debug(debug_message) | 
					
						
						|  |  | 
					
						
						|  | if out_features > module_out_features or in_features > module_in_features: | 
					
						
						|  | has_param_with_shape_update = True | 
					
						
						|  | parent_module_name, _, current_module_name = name.rpartition(".") | 
					
						
						|  | parent_module = transformer.get_submodule(parent_module_name) | 
					
						
						|  |  | 
					
						
						|  | with torch.device("meta"): | 
					
						
						|  | expanded_module = torch.nn.Linear( | 
					
						
						|  | in_features, out_features, bias=bias, dtype=module_weight.dtype | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | new_weight = torch.zeros_like( | 
					
						
						|  | expanded_module.weight.data, device=module_weight.device, dtype=module_weight.dtype | 
					
						
						|  | ) | 
					
						
						|  | slices = tuple(slice(0, dim) for dim in module_weight.shape) | 
					
						
						|  | new_weight[slices] = module_weight | 
					
						
						|  | tmp_state_dict = {"weight": new_weight} | 
					
						
						|  | if module_bias is not None: | 
					
						
						|  | tmp_state_dict["bias"] = module_bias | 
					
						
						|  | expanded_module.load_state_dict(tmp_state_dict, strict=True, assign=True) | 
					
						
						|  |  | 
					
						
						|  | setattr(parent_module, current_module_name, expanded_module) | 
					
						
						|  |  | 
					
						
						|  | del tmp_state_dict | 
					
						
						|  |  | 
					
						
						|  | if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX: | 
					
						
						|  | attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name] | 
					
						
						|  | new_value = int(expanded_module.weight.data.shape[1]) | 
					
						
						|  | old_value = getattr(transformer.config, attribute_name) | 
					
						
						|  | setattr(transformer.config, attribute_name, new_value) | 
					
						
						|  | logger.info( | 
					
						
						|  | f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | overwritten_params[f"{current_module_name}.weight"] = module_weight | 
					
						
						|  | if module_bias is not None: | 
					
						
						|  | overwritten_params[f"{current_module_name}.bias"] = module_bias | 
					
						
						|  |  | 
					
						
						|  | if len(overwritten_params) > 0: | 
					
						
						|  | transformer._overwritten_params = overwritten_params | 
					
						
						|  |  | 
					
						
						|  | return has_param_with_shape_update | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def _maybe_expand_lora_state_dict(cls, transformer, lora_state_dict): | 
					
						
						|  | expanded_module_names = set() | 
					
						
						|  | transformer_state_dict = transformer.state_dict() | 
					
						
						|  | prefix = f"{cls.transformer_name}." | 
					
						
						|  |  | 
					
						
						|  | lora_module_names = [ | 
					
						
						|  | key[: -len(".lora_A.weight")] for key in lora_state_dict if key.endswith(".lora_A.weight") | 
					
						
						|  | ] | 
					
						
						|  | lora_module_names = [name[len(prefix) :] for name in lora_module_names if name.startswith(prefix)] | 
					
						
						|  | lora_module_names = sorted(set(lora_module_names)) | 
					
						
						|  | transformer_module_names = sorted({name for name, _ in transformer.named_modules()}) | 
					
						
						|  | unexpected_modules = set(lora_module_names) - set(transformer_module_names) | 
					
						
						|  | if unexpected_modules: | 
					
						
						|  | logger.debug(f"Found unexpected modules: {unexpected_modules}. These will be ignored.") | 
					
						
						|  |  | 
					
						
						|  | is_peft_loaded = getattr(transformer, "peft_config", None) is not None | 
					
						
						|  | for k in lora_module_names: | 
					
						
						|  | if k in unexpected_modules: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | base_param_name = ( | 
					
						
						|  | f"{k.replace(prefix, '')}.base_layer.weight" | 
					
						
						|  | if is_peft_loaded and f"{k.replace(prefix, '')}.base_layer.weight" in transformer_state_dict | 
					
						
						|  | else f"{k.replace(prefix, '')}.weight" | 
					
						
						|  | ) | 
					
						
						|  | base_weight_param = transformer_state_dict[base_param_name] | 
					
						
						|  | lora_A_param = lora_state_dict[f"{prefix}{k}.lora_A.weight"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | base_module_shape = cls._calculate_module_shape(model=transformer, base_weight_param_name=base_param_name) | 
					
						
						|  |  | 
					
						
						|  | if base_module_shape[1] > lora_A_param.shape[1]: | 
					
						
						|  | shape = (lora_A_param.shape[0], base_weight_param.shape[1]) | 
					
						
						|  | expanded_state_dict_weight = torch.zeros(shape, device=base_weight_param.device) | 
					
						
						|  | expanded_state_dict_weight[:, : lora_A_param.shape[1]].copy_(lora_A_param) | 
					
						
						|  | lora_state_dict[f"{prefix}{k}.lora_A.weight"] = expanded_state_dict_weight | 
					
						
						|  | expanded_module_names.add(k) | 
					
						
						|  | elif base_module_shape[1] < lora_A_param.shape[1]: | 
					
						
						|  | raise NotImplementedError( | 
					
						
						|  | f"This LoRA param ({k}.lora_A.weight) has an incompatible shape {lora_A_param.shape}. Please open an issue to file for a feature request - https://github.com/huggingface/diffusers/issues/new." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if expanded_module_names: | 
					
						
						|  | logger.info( | 
					
						
						|  | f"The following LoRA modules were zero padded to match the state dict of {cls.transformer_name}: {expanded_module_names}. Please open an issue if you think this was unexpected - https://github.com/huggingface/diffusers/issues/new." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return lora_state_dict | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _calculate_module_shape( | 
					
						
						|  | model: "torch.nn.Module", | 
					
						
						|  | base_module: "torch.nn.Linear" = None, | 
					
						
						|  | base_weight_param_name: str = None, | 
					
						
						|  | ) -> "torch.Size": | 
					
						
						|  | def _get_weight_shape(weight: torch.Tensor): | 
					
						
						|  | return weight.quant_state.shape if weight.__class__.__name__ == "Params4bit" else weight.shape | 
					
						
						|  |  | 
					
						
						|  | if base_module is not None: | 
					
						
						|  | return _get_weight_shape(base_module.weight) | 
					
						
						|  | elif base_weight_param_name is not None: | 
					
						
						|  | if not base_weight_param_name.endswith(".weight"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Invalid `base_weight_param_name` passed as it does not end with '.weight' {base_weight_param_name=}." | 
					
						
						|  | ) | 
					
						
						|  | module_path = base_weight_param_name.rsplit(".weight", 1)[0] | 
					
						
						|  | submodule = get_submodule_by_name(model, module_path) | 
					
						
						|  | return _get_weight_shape(submodule.weight) | 
					
						
						|  |  | 
					
						
						|  | raise ValueError("Either `base_module` or `base_weight_param_name` must be provided.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AmusedLoraLoaderMixin(StableDiffusionLoraLoaderMixin): | 
					
						
						|  | _lora_loadable_modules = ["transformer", "text_encoder"] | 
					
						
						|  | transformer_name = TRANSFORMER_NAME | 
					
						
						|  | text_encoder_name = TEXT_ENCODER_NAME | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def load_lora_into_transformer( | 
					
						
						|  | cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | This will load the LoRA layers specified in `state_dict` into `transformer`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | state_dict (`dict`): | 
					
						
						|  | A standard state dict containing the lora layer parameters. The keys can either be indexed directly | 
					
						
						|  | into the unet or prefixed with an additional `unet` which can be used to distinguish between text | 
					
						
						|  | encoder lora layers. | 
					
						
						|  | network_alphas (`Dict[str, float]`): | 
					
						
						|  | The value of the network alpha used for stable learning and preventing underflow. This value has the | 
					
						
						|  | same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | 
					
						
						|  | link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | 
					
						
						|  | transformer (`UVit2DModel`): | 
					
						
						|  | The Transformer model to load the LoRA layers into. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | """ | 
					
						
						|  | if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | keys = list(state_dict.keys()) | 
					
						
						|  | transformer_present = any(key.startswith(cls.transformer_name) for key in keys) | 
					
						
						|  | if transformer_present: | 
					
						
						|  | logger.info(f"Loading {cls.transformer_name}.") | 
					
						
						|  | transformer.load_lora_adapter( | 
					
						
						|  | state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=_pipeline, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def load_lora_into_text_encoder( | 
					
						
						|  | cls, | 
					
						
						|  | state_dict, | 
					
						
						|  | network_alphas, | 
					
						
						|  | text_encoder, | 
					
						
						|  | prefix=None, | 
					
						
						|  | lora_scale=1.0, | 
					
						
						|  | adapter_name=None, | 
					
						
						|  | _pipeline=None, | 
					
						
						|  | low_cpu_mem_usage=False, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | This will load the LoRA layers specified in `state_dict` into `text_encoder` | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | state_dict (`dict`): | 
					
						
						|  | A standard state dict containing the lora layer parameters. The key should be prefixed with an | 
					
						
						|  | additional `text_encoder` to distinguish between unet lora layers. | 
					
						
						|  | network_alphas (`Dict[str, float]`): | 
					
						
						|  | The value of the network alpha used for stable learning and preventing underflow. This value has the | 
					
						
						|  | same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this | 
					
						
						|  | link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). | 
					
						
						|  | text_encoder (`CLIPTextModel`): | 
					
						
						|  | The text encoder model to load the LoRA layers into. | 
					
						
						|  | prefix (`str`): | 
					
						
						|  | Expected prefix of the `text_encoder` in the `state_dict`. | 
					
						
						|  | lora_scale (`float`): | 
					
						
						|  | How much to scale the output of the lora linear layer before it is added with the output of the regular | 
					
						
						|  | lora layer. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | """ | 
					
						
						|  | _load_lora_into_text_encoder( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | network_alphas=network_alphas, | 
					
						
						|  | lora_scale=lora_scale, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | prefix=prefix, | 
					
						
						|  | text_encoder_name=cls.text_encoder_name, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=_pipeline, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def save_lora_weights( | 
					
						
						|  | cls, | 
					
						
						|  | save_directory: Union[str, os.PathLike], | 
					
						
						|  | text_encoder_lora_layers: Dict[str, torch.nn.Module] = None, | 
					
						
						|  | transformer_lora_layers: Dict[str, torch.nn.Module] = None, | 
					
						
						|  | is_main_process: bool = True, | 
					
						
						|  | weight_name: str = None, | 
					
						
						|  | save_function: Callable = None, | 
					
						
						|  | safe_serialization: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Save the LoRA parameters corresponding to the UNet and text encoder. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | save_directory (`str` or `os.PathLike`): | 
					
						
						|  | Directory to save LoRA parameters to. Will be created if it doesn't exist. | 
					
						
						|  | unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `unet`. | 
					
						
						|  | text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text | 
					
						
						|  | encoder LoRA state dict because it comes from 🤗 Transformers. | 
					
						
						|  | is_main_process (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether the process calling this is the main process or not. Useful during distributed training and you | 
					
						
						|  | need to call this function on all processes. In this case, set `is_main_process=True` only on the main | 
					
						
						|  | process to avoid race conditions. | 
					
						
						|  | save_function (`Callable`): | 
					
						
						|  | The function to use to save the state dictionary. Useful during distributed training when you need to | 
					
						
						|  | replace `torch.save` with another method. Can be configured with the environment variable | 
					
						
						|  | `DIFFUSERS_SAVE_MODE`. | 
					
						
						|  | safe_serialization (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | 
					
						
						|  | """ | 
					
						
						|  | state_dict = {} | 
					
						
						|  |  | 
					
						
						|  | if not (transformer_lora_layers or text_encoder_lora_layers): | 
					
						
						|  | raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.") | 
					
						
						|  |  | 
					
						
						|  | if transformer_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | 
					
						
						|  |  | 
					
						
						|  | if text_encoder_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cls.write_lora_layers( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | save_directory=save_directory, | 
					
						
						|  | is_main_process=is_main_process, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | save_function=save_function, | 
					
						
						|  | safe_serialization=safe_serialization, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CogVideoXLoraLoaderMixin(LoraBaseMixin): | 
					
						
						|  | r""" | 
					
						
						|  | Load LoRA layers into [`CogVideoXTransformer3DModel`]. Specific to [`CogVideoXPipeline`]. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _lora_loadable_modules = ["transformer"] | 
					
						
						|  | transformer_name = TRANSFORMER_NAME | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | @validate_hf_hub_args | 
					
						
						|  |  | 
					
						
						|  | def lora_state_dict( | 
					
						
						|  | cls, | 
					
						
						|  | pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Return state dict for lora weights and the network alphas. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | We support loading A1111 formatted LoRA checkpoints in a limited capacity. | 
					
						
						|  |  | 
					
						
						|  | This function is experimental and might change in the future. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | Can be either: | 
					
						
						|  |  | 
					
						
						|  | - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | 
					
						
						|  | the Hub. | 
					
						
						|  | - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | 
					
						
						|  | with [`ModelMixin.save_pretrained`]. | 
					
						
						|  | - A [torch state | 
					
						
						|  | dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | 
					
						
						|  |  | 
					
						
						|  | cache_dir (`Union[str, os.PathLike]`, *optional*): | 
					
						
						|  | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | 
					
						
						|  | is not used. | 
					
						
						|  | force_download (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not to force the (re-)download of the model weights and configuration files, overriding the | 
					
						
						|  | cached versions if they exist. | 
					
						
						|  |  | 
					
						
						|  | proxies (`Dict[str, str]`, *optional*): | 
					
						
						|  | A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | 
					
						
						|  | 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | 
					
						
						|  | local_files_only (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to only load local model weights and configuration files or not. If set to `True`, the model | 
					
						
						|  | won't be downloaded from the Hub. | 
					
						
						|  | token (`str` or *bool*, *optional*): | 
					
						
						|  | The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | 
					
						
						|  | `diffusers-cli login` (stored in `~/.huggingface`) is used. | 
					
						
						|  | revision (`str`, *optional*, defaults to `"main"`): | 
					
						
						|  | The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | 
					
						
						|  | allowed by Git. | 
					
						
						|  | subfolder (`str`, *optional*, defaults to `""`): | 
					
						
						|  | The subfolder location of a model file within a larger model repository on the Hub or locally. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cache_dir = kwargs.pop("cache_dir", None) | 
					
						
						|  | force_download = kwargs.pop("force_download", False) | 
					
						
						|  | proxies = kwargs.pop("proxies", None) | 
					
						
						|  | local_files_only = kwargs.pop("local_files_only", None) | 
					
						
						|  | token = kwargs.pop("token", None) | 
					
						
						|  | revision = kwargs.pop("revision", None) | 
					
						
						|  | subfolder = kwargs.pop("subfolder", None) | 
					
						
						|  | weight_name = kwargs.pop("weight_name", None) | 
					
						
						|  | use_safetensors = kwargs.pop("use_safetensors", None) | 
					
						
						|  |  | 
					
						
						|  | allow_pickle = False | 
					
						
						|  | if use_safetensors is None: | 
					
						
						|  | use_safetensors = True | 
					
						
						|  | allow_pickle = True | 
					
						
						|  |  | 
					
						
						|  | user_agent = { | 
					
						
						|  | "file_type": "attn_procs_weights", | 
					
						
						|  | "framework": "pytorch", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | state_dict = _fetch_state_dict( | 
					
						
						|  | pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | use_safetensors=use_safetensors, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | force_download=force_download, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | token=token, | 
					
						
						|  | revision=revision, | 
					
						
						|  | subfolder=subfolder, | 
					
						
						|  | user_agent=user_agent, | 
					
						
						|  | allow_pickle=allow_pickle, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | is_dora_scale_present = any("dora_scale" in k for k in state_dict) | 
					
						
						|  | if is_dora_scale_present: | 
					
						
						|  | warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | 
					
						
						|  | logger.warning(warn_msg) | 
					
						
						|  | state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | 
					
						
						|  |  | 
					
						
						|  | return state_dict | 
					
						
						|  |  | 
					
						
						|  | def load_lora_weights( | 
					
						
						|  | self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and | 
					
						
						|  | `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See | 
					
						
						|  | [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state | 
					
						
						|  | dict is loaded into `self.transformer`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | kwargs (`dict`, *optional*): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | """ | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | raise ValueError("PEFT backend is required for this method.") | 
					
						
						|  |  | 
					
						
						|  | low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | 
					
						
						|  | if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(pretrained_model_name_or_path_or_dict, dict): | 
					
						
						|  | pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | is_correct_format = all("lora" in key for key in state_dict.keys()) | 
					
						
						|  | if not is_correct_format: | 
					
						
						|  | raise ValueError("Invalid LoRA checkpoint.") | 
					
						
						|  |  | 
					
						
						|  | self.load_lora_into_transformer( | 
					
						
						|  | state_dict, | 
					
						
						|  | transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=self, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def load_lora_into_transformer( | 
					
						
						|  | cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | This will load the LoRA layers specified in `state_dict` into `transformer`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | state_dict (`dict`): | 
					
						
						|  | A standard state dict containing the lora layer parameters. The keys can either be indexed directly | 
					
						
						|  | into the unet or prefixed with an additional `unet` which can be used to distinguish between text | 
					
						
						|  | encoder lora layers. | 
					
						
						|  | transformer (`CogVideoXTransformer3DModel`): | 
					
						
						|  | The Transformer model to load the LoRA layers into. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | """ | 
					
						
						|  | if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Loading {cls.transformer_name}.") | 
					
						
						|  | transformer.load_lora_adapter( | 
					
						
						|  | state_dict, | 
					
						
						|  | network_alphas=None, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=_pipeline, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def save_lora_weights( | 
					
						
						|  | cls, | 
					
						
						|  | save_directory: Union[str, os.PathLike], | 
					
						
						|  | transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | is_main_process: bool = True, | 
					
						
						|  | weight_name: str = None, | 
					
						
						|  | save_function: Callable = None, | 
					
						
						|  | safe_serialization: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Save the LoRA parameters corresponding to the UNet and text encoder. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | save_directory (`str` or `os.PathLike`): | 
					
						
						|  | Directory to save LoRA parameters to. Will be created if it doesn't exist. | 
					
						
						|  | transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `transformer`. | 
					
						
						|  | is_main_process (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether the process calling this is the main process or not. Useful during distributed training and you | 
					
						
						|  | need to call this function on all processes. In this case, set `is_main_process=True` only on the main | 
					
						
						|  | process to avoid race conditions. | 
					
						
						|  | save_function (`Callable`): | 
					
						
						|  | The function to use to save the state dictionary. Useful during distributed training when you need to | 
					
						
						|  | replace `torch.save` with another method. Can be configured with the environment variable | 
					
						
						|  | `DIFFUSERS_SAVE_MODE`. | 
					
						
						|  | safe_serialization (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | 
					
						
						|  | """ | 
					
						
						|  | state_dict = {} | 
					
						
						|  |  | 
					
						
						|  | if not transformer_lora_layers: | 
					
						
						|  | raise ValueError("You must pass `transformer_lora_layers`.") | 
					
						
						|  |  | 
					
						
						|  | if transformer_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cls.write_lora_layers( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | save_directory=save_directory, | 
					
						
						|  | is_main_process=is_main_process, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | save_function=save_function, | 
					
						
						|  | safe_serialization=safe_serialization, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def fuse_lora( | 
					
						
						|  | self, | 
					
						
						|  | components: List[str] = ["transformer"], | 
					
						
						|  | lora_scale: float = 1.0, | 
					
						
						|  | safe_fusing: bool = False, | 
					
						
						|  | adapter_names: Optional[List[str]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Fuses the LoRA parameters into the original parameters of the corresponding blocks. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | 
					
						
						|  | lora_scale (`float`, defaults to 1.0): | 
					
						
						|  | Controls how much to influence the outputs with the LoRA parameters. | 
					
						
						|  | safe_fusing (`bool`, defaults to `False`): | 
					
						
						|  | Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | 
					
						
						|  | adapter_names (`List[str]`, *optional*): | 
					
						
						|  | Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```py | 
					
						
						|  | from diffusers import DiffusionPipeline | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | pipeline = DiffusionPipeline.from_pretrained( | 
					
						
						|  | "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | 
					
						
						|  | ).to("cuda") | 
					
						
						|  | pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | 
					
						
						|  | pipeline.fuse_lora(lora_scale=0.7) | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  | super().fuse_lora( | 
					
						
						|  | components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs): | 
					
						
						|  | r""" | 
					
						
						|  | Reverses the effect of | 
					
						
						|  | [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | 
					
						
						|  | unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | 
					
						
						|  | """ | 
					
						
						|  | super().unfuse_lora(components=components) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Mochi1LoraLoaderMixin(LoraBaseMixin): | 
					
						
						|  | r""" | 
					
						
						|  | Load LoRA layers into [`MochiTransformer3DModel`]. Specific to [`MochiPipeline`]. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _lora_loadable_modules = ["transformer"] | 
					
						
						|  | transformer_name = TRANSFORMER_NAME | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | @validate_hf_hub_args | 
					
						
						|  |  | 
					
						
						|  | def lora_state_dict( | 
					
						
						|  | cls, | 
					
						
						|  | pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Return state dict for lora weights and the network alphas. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | We support loading A1111 formatted LoRA checkpoints in a limited capacity. | 
					
						
						|  |  | 
					
						
						|  | This function is experimental and might change in the future. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | Can be either: | 
					
						
						|  |  | 
					
						
						|  | - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | 
					
						
						|  | the Hub. | 
					
						
						|  | - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | 
					
						
						|  | with [`ModelMixin.save_pretrained`]. | 
					
						
						|  | - A [torch state | 
					
						
						|  | dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | 
					
						
						|  |  | 
					
						
						|  | cache_dir (`Union[str, os.PathLike]`, *optional*): | 
					
						
						|  | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | 
					
						
						|  | is not used. | 
					
						
						|  | force_download (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not to force the (re-)download of the model weights and configuration files, overriding the | 
					
						
						|  | cached versions if they exist. | 
					
						
						|  |  | 
					
						
						|  | proxies (`Dict[str, str]`, *optional*): | 
					
						
						|  | A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | 
					
						
						|  | 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | 
					
						
						|  | local_files_only (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to only load local model weights and configuration files or not. If set to `True`, the model | 
					
						
						|  | won't be downloaded from the Hub. | 
					
						
						|  | token (`str` or *bool*, *optional*): | 
					
						
						|  | The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | 
					
						
						|  | `diffusers-cli login` (stored in `~/.huggingface`) is used. | 
					
						
						|  | revision (`str`, *optional*, defaults to `"main"`): | 
					
						
						|  | The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | 
					
						
						|  | allowed by Git. | 
					
						
						|  | subfolder (`str`, *optional*, defaults to `""`): | 
					
						
						|  | The subfolder location of a model file within a larger model repository on the Hub or locally. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cache_dir = kwargs.pop("cache_dir", None) | 
					
						
						|  | force_download = kwargs.pop("force_download", False) | 
					
						
						|  | proxies = kwargs.pop("proxies", None) | 
					
						
						|  | local_files_only = kwargs.pop("local_files_only", None) | 
					
						
						|  | token = kwargs.pop("token", None) | 
					
						
						|  | revision = kwargs.pop("revision", None) | 
					
						
						|  | subfolder = kwargs.pop("subfolder", None) | 
					
						
						|  | weight_name = kwargs.pop("weight_name", None) | 
					
						
						|  | use_safetensors = kwargs.pop("use_safetensors", None) | 
					
						
						|  |  | 
					
						
						|  | allow_pickle = False | 
					
						
						|  | if use_safetensors is None: | 
					
						
						|  | use_safetensors = True | 
					
						
						|  | allow_pickle = True | 
					
						
						|  |  | 
					
						
						|  | user_agent = { | 
					
						
						|  | "file_type": "attn_procs_weights", | 
					
						
						|  | "framework": "pytorch", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | state_dict = _fetch_state_dict( | 
					
						
						|  | pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | use_safetensors=use_safetensors, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | force_download=force_download, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | token=token, | 
					
						
						|  | revision=revision, | 
					
						
						|  | subfolder=subfolder, | 
					
						
						|  | user_agent=user_agent, | 
					
						
						|  | allow_pickle=allow_pickle, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | is_dora_scale_present = any("dora_scale" in k for k in state_dict) | 
					
						
						|  | if is_dora_scale_present: | 
					
						
						|  | warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | 
					
						
						|  | logger.warning(warn_msg) | 
					
						
						|  | state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | 
					
						
						|  |  | 
					
						
						|  | return state_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_lora_weights( | 
					
						
						|  | self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and | 
					
						
						|  | `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See | 
					
						
						|  | [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state | 
					
						
						|  | dict is loaded into `self.transformer`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | kwargs (`dict`, *optional*): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | """ | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | raise ValueError("PEFT backend is required for this method.") | 
					
						
						|  |  | 
					
						
						|  | low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | 
					
						
						|  | if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(pretrained_model_name_or_path_or_dict, dict): | 
					
						
						|  | pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | is_correct_format = all("lora" in key for key in state_dict.keys()) | 
					
						
						|  | if not is_correct_format: | 
					
						
						|  | raise ValueError("Invalid LoRA checkpoint.") | 
					
						
						|  |  | 
					
						
						|  | self.load_lora_into_transformer( | 
					
						
						|  | state_dict, | 
					
						
						|  | transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=self, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def load_lora_into_transformer( | 
					
						
						|  | cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | This will load the LoRA layers specified in `state_dict` into `transformer`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | state_dict (`dict`): | 
					
						
						|  | A standard state dict containing the lora layer parameters. The keys can either be indexed directly | 
					
						
						|  | into the unet or prefixed with an additional `unet` which can be used to distinguish between text | 
					
						
						|  | encoder lora layers. | 
					
						
						|  | transformer (`MochiTransformer3DModel`): | 
					
						
						|  | The Transformer model to load the LoRA layers into. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | """ | 
					
						
						|  | if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Loading {cls.transformer_name}.") | 
					
						
						|  | transformer.load_lora_adapter( | 
					
						
						|  | state_dict, | 
					
						
						|  | network_alphas=None, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=_pipeline, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def save_lora_weights( | 
					
						
						|  | cls, | 
					
						
						|  | save_directory: Union[str, os.PathLike], | 
					
						
						|  | transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | is_main_process: bool = True, | 
					
						
						|  | weight_name: str = None, | 
					
						
						|  | save_function: Callable = None, | 
					
						
						|  | safe_serialization: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Save the LoRA parameters corresponding to the UNet and text encoder. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | save_directory (`str` or `os.PathLike`): | 
					
						
						|  | Directory to save LoRA parameters to. Will be created if it doesn't exist. | 
					
						
						|  | transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `transformer`. | 
					
						
						|  | is_main_process (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether the process calling this is the main process or not. Useful during distributed training and you | 
					
						
						|  | need to call this function on all processes. In this case, set `is_main_process=True` only on the main | 
					
						
						|  | process to avoid race conditions. | 
					
						
						|  | save_function (`Callable`): | 
					
						
						|  | The function to use to save the state dictionary. Useful during distributed training when you need to | 
					
						
						|  | replace `torch.save` with another method. Can be configured with the environment variable | 
					
						
						|  | `DIFFUSERS_SAVE_MODE`. | 
					
						
						|  | safe_serialization (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | 
					
						
						|  | """ | 
					
						
						|  | state_dict = {} | 
					
						
						|  |  | 
					
						
						|  | if not transformer_lora_layers: | 
					
						
						|  | raise ValueError("You must pass `transformer_lora_layers`.") | 
					
						
						|  |  | 
					
						
						|  | if transformer_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cls.write_lora_layers( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | save_directory=save_directory, | 
					
						
						|  | is_main_process=is_main_process, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | save_function=save_function, | 
					
						
						|  | safe_serialization=safe_serialization, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def fuse_lora( | 
					
						
						|  | self, | 
					
						
						|  | components: List[str] = ["transformer"], | 
					
						
						|  | lora_scale: float = 1.0, | 
					
						
						|  | safe_fusing: bool = False, | 
					
						
						|  | adapter_names: Optional[List[str]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Fuses the LoRA parameters into the original parameters of the corresponding blocks. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | 
					
						
						|  | lora_scale (`float`, defaults to 1.0): | 
					
						
						|  | Controls how much to influence the outputs with the LoRA parameters. | 
					
						
						|  | safe_fusing (`bool`, defaults to `False`): | 
					
						
						|  | Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | 
					
						
						|  | adapter_names (`List[str]`, *optional*): | 
					
						
						|  | Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```py | 
					
						
						|  | from diffusers import DiffusionPipeline | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | pipeline = DiffusionPipeline.from_pretrained( | 
					
						
						|  | "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | 
					
						
						|  | ).to("cuda") | 
					
						
						|  | pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | 
					
						
						|  | pipeline.fuse_lora(lora_scale=0.7) | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  | super().fuse_lora( | 
					
						
						|  | components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs): | 
					
						
						|  | r""" | 
					
						
						|  | Reverses the effect of | 
					
						
						|  | [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | 
					
						
						|  | unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | 
					
						
						|  | """ | 
					
						
						|  | super().unfuse_lora(components=components) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LTXVideoLoraLoaderMixin(LoraBaseMixin): | 
					
						
						|  | r""" | 
					
						
						|  | Load LoRA layers into [`LTXVideoTransformer3DModel`]. Specific to [`LTXPipeline`]. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _lora_loadable_modules = ["transformer"] | 
					
						
						|  | transformer_name = TRANSFORMER_NAME | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | @validate_hf_hub_args | 
					
						
						|  |  | 
					
						
						|  | def lora_state_dict( | 
					
						
						|  | cls, | 
					
						
						|  | pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Return state dict for lora weights and the network alphas. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | We support loading A1111 formatted LoRA checkpoints in a limited capacity. | 
					
						
						|  |  | 
					
						
						|  | This function is experimental and might change in the future. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | Can be either: | 
					
						
						|  |  | 
					
						
						|  | - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | 
					
						
						|  | the Hub. | 
					
						
						|  | - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | 
					
						
						|  | with [`ModelMixin.save_pretrained`]. | 
					
						
						|  | - A [torch state | 
					
						
						|  | dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | 
					
						
						|  |  | 
					
						
						|  | cache_dir (`Union[str, os.PathLike]`, *optional*): | 
					
						
						|  | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | 
					
						
						|  | is not used. | 
					
						
						|  | force_download (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not to force the (re-)download of the model weights and configuration files, overriding the | 
					
						
						|  | cached versions if they exist. | 
					
						
						|  |  | 
					
						
						|  | proxies (`Dict[str, str]`, *optional*): | 
					
						
						|  | A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | 
					
						
						|  | 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | 
					
						
						|  | local_files_only (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to only load local model weights and configuration files or not. If set to `True`, the model | 
					
						
						|  | won't be downloaded from the Hub. | 
					
						
						|  | token (`str` or *bool*, *optional*): | 
					
						
						|  | The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | 
					
						
						|  | `diffusers-cli login` (stored in `~/.huggingface`) is used. | 
					
						
						|  | revision (`str`, *optional*, defaults to `"main"`): | 
					
						
						|  | The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | 
					
						
						|  | allowed by Git. | 
					
						
						|  | subfolder (`str`, *optional*, defaults to `""`): | 
					
						
						|  | The subfolder location of a model file within a larger model repository on the Hub or locally. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cache_dir = kwargs.pop("cache_dir", None) | 
					
						
						|  | force_download = kwargs.pop("force_download", False) | 
					
						
						|  | proxies = kwargs.pop("proxies", None) | 
					
						
						|  | local_files_only = kwargs.pop("local_files_only", None) | 
					
						
						|  | token = kwargs.pop("token", None) | 
					
						
						|  | revision = kwargs.pop("revision", None) | 
					
						
						|  | subfolder = kwargs.pop("subfolder", None) | 
					
						
						|  | weight_name = kwargs.pop("weight_name", None) | 
					
						
						|  | use_safetensors = kwargs.pop("use_safetensors", None) | 
					
						
						|  |  | 
					
						
						|  | allow_pickle = False | 
					
						
						|  | if use_safetensors is None: | 
					
						
						|  | use_safetensors = True | 
					
						
						|  | allow_pickle = True | 
					
						
						|  |  | 
					
						
						|  | user_agent = { | 
					
						
						|  | "file_type": "attn_procs_weights", | 
					
						
						|  | "framework": "pytorch", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | state_dict = _fetch_state_dict( | 
					
						
						|  | pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | use_safetensors=use_safetensors, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | force_download=force_download, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | token=token, | 
					
						
						|  | revision=revision, | 
					
						
						|  | subfolder=subfolder, | 
					
						
						|  | user_agent=user_agent, | 
					
						
						|  | allow_pickle=allow_pickle, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | is_dora_scale_present = any("dora_scale" in k for k in state_dict) | 
					
						
						|  | if is_dora_scale_present: | 
					
						
						|  | warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | 
					
						
						|  | logger.warning(warn_msg) | 
					
						
						|  | state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | 
					
						
						|  |  | 
					
						
						|  | return state_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_lora_weights( | 
					
						
						|  | self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and | 
					
						
						|  | `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See | 
					
						
						|  | [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state | 
					
						
						|  | dict is loaded into `self.transformer`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | kwargs (`dict`, *optional*): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | """ | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | raise ValueError("PEFT backend is required for this method.") | 
					
						
						|  |  | 
					
						
						|  | low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | 
					
						
						|  | if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(pretrained_model_name_or_path_or_dict, dict): | 
					
						
						|  | pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | is_correct_format = all("lora" in key for key in state_dict.keys()) | 
					
						
						|  | if not is_correct_format: | 
					
						
						|  | raise ValueError("Invalid LoRA checkpoint.") | 
					
						
						|  |  | 
					
						
						|  | self.load_lora_into_transformer( | 
					
						
						|  | state_dict, | 
					
						
						|  | transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=self, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def load_lora_into_transformer( | 
					
						
						|  | cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | This will load the LoRA layers specified in `state_dict` into `transformer`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | state_dict (`dict`): | 
					
						
						|  | A standard state dict containing the lora layer parameters. The keys can either be indexed directly | 
					
						
						|  | into the unet or prefixed with an additional `unet` which can be used to distinguish between text | 
					
						
						|  | encoder lora layers. | 
					
						
						|  | transformer (`LTXVideoTransformer3DModel`): | 
					
						
						|  | The Transformer model to load the LoRA layers into. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | """ | 
					
						
						|  | if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Loading {cls.transformer_name}.") | 
					
						
						|  | transformer.load_lora_adapter( | 
					
						
						|  | state_dict, | 
					
						
						|  | network_alphas=None, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=_pipeline, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def save_lora_weights( | 
					
						
						|  | cls, | 
					
						
						|  | save_directory: Union[str, os.PathLike], | 
					
						
						|  | transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | is_main_process: bool = True, | 
					
						
						|  | weight_name: str = None, | 
					
						
						|  | save_function: Callable = None, | 
					
						
						|  | safe_serialization: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Save the LoRA parameters corresponding to the UNet and text encoder. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | save_directory (`str` or `os.PathLike`): | 
					
						
						|  | Directory to save LoRA parameters to. Will be created if it doesn't exist. | 
					
						
						|  | transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `transformer`. | 
					
						
						|  | is_main_process (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether the process calling this is the main process or not. Useful during distributed training and you | 
					
						
						|  | need to call this function on all processes. In this case, set `is_main_process=True` only on the main | 
					
						
						|  | process to avoid race conditions. | 
					
						
						|  | save_function (`Callable`): | 
					
						
						|  | The function to use to save the state dictionary. Useful during distributed training when you need to | 
					
						
						|  | replace `torch.save` with another method. Can be configured with the environment variable | 
					
						
						|  | `DIFFUSERS_SAVE_MODE`. | 
					
						
						|  | safe_serialization (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | 
					
						
						|  | """ | 
					
						
						|  | state_dict = {} | 
					
						
						|  |  | 
					
						
						|  | if not transformer_lora_layers: | 
					
						
						|  | raise ValueError("You must pass `transformer_lora_layers`.") | 
					
						
						|  |  | 
					
						
						|  | if transformer_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cls.write_lora_layers( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | save_directory=save_directory, | 
					
						
						|  | is_main_process=is_main_process, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | save_function=save_function, | 
					
						
						|  | safe_serialization=safe_serialization, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def fuse_lora( | 
					
						
						|  | self, | 
					
						
						|  | components: List[str] = ["transformer"], | 
					
						
						|  | lora_scale: float = 1.0, | 
					
						
						|  | safe_fusing: bool = False, | 
					
						
						|  | adapter_names: Optional[List[str]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Fuses the LoRA parameters into the original parameters of the corresponding blocks. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | 
					
						
						|  | lora_scale (`float`, defaults to 1.0): | 
					
						
						|  | Controls how much to influence the outputs with the LoRA parameters. | 
					
						
						|  | safe_fusing (`bool`, defaults to `False`): | 
					
						
						|  | Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | 
					
						
						|  | adapter_names (`List[str]`, *optional*): | 
					
						
						|  | Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```py | 
					
						
						|  | from diffusers import DiffusionPipeline | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | pipeline = DiffusionPipeline.from_pretrained( | 
					
						
						|  | "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | 
					
						
						|  | ).to("cuda") | 
					
						
						|  | pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | 
					
						
						|  | pipeline.fuse_lora(lora_scale=0.7) | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  | super().fuse_lora( | 
					
						
						|  | components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs): | 
					
						
						|  | r""" | 
					
						
						|  | Reverses the effect of | 
					
						
						|  | [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | 
					
						
						|  | unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | 
					
						
						|  | """ | 
					
						
						|  | super().unfuse_lora(components=components) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SanaLoraLoaderMixin(LoraBaseMixin): | 
					
						
						|  | r""" | 
					
						
						|  | Load LoRA layers into [`SanaTransformer2DModel`]. Specific to [`SanaPipeline`]. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _lora_loadable_modules = ["transformer"] | 
					
						
						|  | transformer_name = TRANSFORMER_NAME | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | @validate_hf_hub_args | 
					
						
						|  |  | 
					
						
						|  | def lora_state_dict( | 
					
						
						|  | cls, | 
					
						
						|  | pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Return state dict for lora weights and the network alphas. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | We support loading A1111 formatted LoRA checkpoints in a limited capacity. | 
					
						
						|  |  | 
					
						
						|  | This function is experimental and might change in the future. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | Can be either: | 
					
						
						|  |  | 
					
						
						|  | - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | 
					
						
						|  | the Hub. | 
					
						
						|  | - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | 
					
						
						|  | with [`ModelMixin.save_pretrained`]. | 
					
						
						|  | - A [torch state | 
					
						
						|  | dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | 
					
						
						|  |  | 
					
						
						|  | cache_dir (`Union[str, os.PathLike]`, *optional*): | 
					
						
						|  | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | 
					
						
						|  | is not used. | 
					
						
						|  | force_download (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not to force the (re-)download of the model weights and configuration files, overriding the | 
					
						
						|  | cached versions if they exist. | 
					
						
						|  |  | 
					
						
						|  | proxies (`Dict[str, str]`, *optional*): | 
					
						
						|  | A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | 
					
						
						|  | 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | 
					
						
						|  | local_files_only (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to only load local model weights and configuration files or not. If set to `True`, the model | 
					
						
						|  | won't be downloaded from the Hub. | 
					
						
						|  | token (`str` or *bool*, *optional*): | 
					
						
						|  | The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | 
					
						
						|  | `diffusers-cli login` (stored in `~/.huggingface`) is used. | 
					
						
						|  | revision (`str`, *optional*, defaults to `"main"`): | 
					
						
						|  | The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | 
					
						
						|  | allowed by Git. | 
					
						
						|  | subfolder (`str`, *optional*, defaults to `""`): | 
					
						
						|  | The subfolder location of a model file within a larger model repository on the Hub or locally. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cache_dir = kwargs.pop("cache_dir", None) | 
					
						
						|  | force_download = kwargs.pop("force_download", False) | 
					
						
						|  | proxies = kwargs.pop("proxies", None) | 
					
						
						|  | local_files_only = kwargs.pop("local_files_only", None) | 
					
						
						|  | token = kwargs.pop("token", None) | 
					
						
						|  | revision = kwargs.pop("revision", None) | 
					
						
						|  | subfolder = kwargs.pop("subfolder", None) | 
					
						
						|  | weight_name = kwargs.pop("weight_name", None) | 
					
						
						|  | use_safetensors = kwargs.pop("use_safetensors", None) | 
					
						
						|  |  | 
					
						
						|  | allow_pickle = False | 
					
						
						|  | if use_safetensors is None: | 
					
						
						|  | use_safetensors = True | 
					
						
						|  | allow_pickle = True | 
					
						
						|  |  | 
					
						
						|  | user_agent = { | 
					
						
						|  | "file_type": "attn_procs_weights", | 
					
						
						|  | "framework": "pytorch", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | state_dict = _fetch_state_dict( | 
					
						
						|  | pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | use_safetensors=use_safetensors, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | force_download=force_download, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | token=token, | 
					
						
						|  | revision=revision, | 
					
						
						|  | subfolder=subfolder, | 
					
						
						|  | user_agent=user_agent, | 
					
						
						|  | allow_pickle=allow_pickle, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | is_dora_scale_present = any("dora_scale" in k for k in state_dict) | 
					
						
						|  | if is_dora_scale_present: | 
					
						
						|  | warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | 
					
						
						|  | logger.warning(warn_msg) | 
					
						
						|  | state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | 
					
						
						|  |  | 
					
						
						|  | return state_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_lora_weights( | 
					
						
						|  | self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and | 
					
						
						|  | `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See | 
					
						
						|  | [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state | 
					
						
						|  | dict is loaded into `self.transformer`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | kwargs (`dict`, *optional*): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | """ | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | raise ValueError("PEFT backend is required for this method.") | 
					
						
						|  |  | 
					
						
						|  | low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | 
					
						
						|  | if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(pretrained_model_name_or_path_or_dict, dict): | 
					
						
						|  | pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | is_correct_format = all("lora" in key for key in state_dict.keys()) | 
					
						
						|  | if not is_correct_format: | 
					
						
						|  | raise ValueError("Invalid LoRA checkpoint.") | 
					
						
						|  |  | 
					
						
						|  | self.load_lora_into_transformer( | 
					
						
						|  | state_dict, | 
					
						
						|  | transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=self, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def load_lora_into_transformer( | 
					
						
						|  | cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | This will load the LoRA layers specified in `state_dict` into `transformer`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | state_dict (`dict`): | 
					
						
						|  | A standard state dict containing the lora layer parameters. The keys can either be indexed directly | 
					
						
						|  | into the unet or prefixed with an additional `unet` which can be used to distinguish between text | 
					
						
						|  | encoder lora layers. | 
					
						
						|  | transformer (`SanaTransformer2DModel`): | 
					
						
						|  | The Transformer model to load the LoRA layers into. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | """ | 
					
						
						|  | if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Loading {cls.transformer_name}.") | 
					
						
						|  | transformer.load_lora_adapter( | 
					
						
						|  | state_dict, | 
					
						
						|  | network_alphas=None, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=_pipeline, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def save_lora_weights( | 
					
						
						|  | cls, | 
					
						
						|  | save_directory: Union[str, os.PathLike], | 
					
						
						|  | transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | is_main_process: bool = True, | 
					
						
						|  | weight_name: str = None, | 
					
						
						|  | save_function: Callable = None, | 
					
						
						|  | safe_serialization: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Save the LoRA parameters corresponding to the UNet and text encoder. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | save_directory (`str` or `os.PathLike`): | 
					
						
						|  | Directory to save LoRA parameters to. Will be created if it doesn't exist. | 
					
						
						|  | transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `transformer`. | 
					
						
						|  | is_main_process (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether the process calling this is the main process or not. Useful during distributed training and you | 
					
						
						|  | need to call this function on all processes. In this case, set `is_main_process=True` only on the main | 
					
						
						|  | process to avoid race conditions. | 
					
						
						|  | save_function (`Callable`): | 
					
						
						|  | The function to use to save the state dictionary. Useful during distributed training when you need to | 
					
						
						|  | replace `torch.save` with another method. Can be configured with the environment variable | 
					
						
						|  | `DIFFUSERS_SAVE_MODE`. | 
					
						
						|  | safe_serialization (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | 
					
						
						|  | """ | 
					
						
						|  | state_dict = {} | 
					
						
						|  |  | 
					
						
						|  | if not transformer_lora_layers: | 
					
						
						|  | raise ValueError("You must pass `transformer_lora_layers`.") | 
					
						
						|  |  | 
					
						
						|  | if transformer_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cls.write_lora_layers( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | save_directory=save_directory, | 
					
						
						|  | is_main_process=is_main_process, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | save_function=save_function, | 
					
						
						|  | safe_serialization=safe_serialization, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def fuse_lora( | 
					
						
						|  | self, | 
					
						
						|  | components: List[str] = ["transformer"], | 
					
						
						|  | lora_scale: float = 1.0, | 
					
						
						|  | safe_fusing: bool = False, | 
					
						
						|  | adapter_names: Optional[List[str]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Fuses the LoRA parameters into the original parameters of the corresponding blocks. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | 
					
						
						|  | lora_scale (`float`, defaults to 1.0): | 
					
						
						|  | Controls how much to influence the outputs with the LoRA parameters. | 
					
						
						|  | safe_fusing (`bool`, defaults to `False`): | 
					
						
						|  | Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | 
					
						
						|  | adapter_names (`List[str]`, *optional*): | 
					
						
						|  | Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```py | 
					
						
						|  | from diffusers import DiffusionPipeline | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | pipeline = DiffusionPipeline.from_pretrained( | 
					
						
						|  | "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | 
					
						
						|  | ).to("cuda") | 
					
						
						|  | pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | 
					
						
						|  | pipeline.fuse_lora(lora_scale=0.7) | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  | super().fuse_lora( | 
					
						
						|  | components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs): | 
					
						
						|  | r""" | 
					
						
						|  | Reverses the effect of | 
					
						
						|  | [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | 
					
						
						|  | unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | 
					
						
						|  | """ | 
					
						
						|  | super().unfuse_lora(components=components) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HunyuanVideoLoraLoaderMixin(LoraBaseMixin): | 
					
						
						|  | r""" | 
					
						
						|  | Load LoRA layers into [`HunyuanVideoTransformer3DModel`]. Specific to [`HunyuanVideoPipeline`]. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _lora_loadable_modules = ["transformer"] | 
					
						
						|  | transformer_name = TRANSFORMER_NAME | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | @validate_hf_hub_args | 
					
						
						|  | def lora_state_dict( | 
					
						
						|  | cls, | 
					
						
						|  | pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Return state dict for lora weights and the network alphas. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | We support loading original format HunyuanVideo LoRA checkpoints. | 
					
						
						|  |  | 
					
						
						|  | This function is experimental and might change in the future. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | Can be either: | 
					
						
						|  |  | 
					
						
						|  | - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | 
					
						
						|  | the Hub. | 
					
						
						|  | - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | 
					
						
						|  | with [`ModelMixin.save_pretrained`]. | 
					
						
						|  | - A [torch state | 
					
						
						|  | dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | 
					
						
						|  |  | 
					
						
						|  | cache_dir (`Union[str, os.PathLike]`, *optional*): | 
					
						
						|  | Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | 
					
						
						|  | is not used. | 
					
						
						|  | force_download (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not to force the (re-)download of the model weights and configuration files, overriding the | 
					
						
						|  | cached versions if they exist. | 
					
						
						|  |  | 
					
						
						|  | proxies (`Dict[str, str]`, *optional*): | 
					
						
						|  | A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | 
					
						
						|  | 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | 
					
						
						|  | local_files_only (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to only load local model weights and configuration files or not. If set to `True`, the model | 
					
						
						|  | won't be downloaded from the Hub. | 
					
						
						|  | token (`str` or *bool*, *optional*): | 
					
						
						|  | The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | 
					
						
						|  | `diffusers-cli login` (stored in `~/.huggingface`) is used. | 
					
						
						|  | revision (`str`, *optional*, defaults to `"main"`): | 
					
						
						|  | The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | 
					
						
						|  | allowed by Git. | 
					
						
						|  | subfolder (`str`, *optional*, defaults to `""`): | 
					
						
						|  | The subfolder location of a model file within a larger model repository on the Hub or locally. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cache_dir = kwargs.pop("cache_dir", None) | 
					
						
						|  | force_download = kwargs.pop("force_download", False) | 
					
						
						|  | proxies = kwargs.pop("proxies", None) | 
					
						
						|  | local_files_only = kwargs.pop("local_files_only", None) | 
					
						
						|  | token = kwargs.pop("token", None) | 
					
						
						|  | revision = kwargs.pop("revision", None) | 
					
						
						|  | subfolder = kwargs.pop("subfolder", None) | 
					
						
						|  | weight_name = kwargs.pop("weight_name", None) | 
					
						
						|  | use_safetensors = kwargs.pop("use_safetensors", None) | 
					
						
						|  |  | 
					
						
						|  | allow_pickle = False | 
					
						
						|  | if use_safetensors is None: | 
					
						
						|  | use_safetensors = True | 
					
						
						|  | allow_pickle = True | 
					
						
						|  |  | 
					
						
						|  | user_agent = { | 
					
						
						|  | "file_type": "attn_procs_weights", | 
					
						
						|  | "framework": "pytorch", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | state_dict = _fetch_state_dict( | 
					
						
						|  | pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | use_safetensors=use_safetensors, | 
					
						
						|  | local_files_only=local_files_only, | 
					
						
						|  | cache_dir=cache_dir, | 
					
						
						|  | force_download=force_download, | 
					
						
						|  | proxies=proxies, | 
					
						
						|  | token=token, | 
					
						
						|  | revision=revision, | 
					
						
						|  | subfolder=subfolder, | 
					
						
						|  | user_agent=user_agent, | 
					
						
						|  | allow_pickle=allow_pickle, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | is_dora_scale_present = any("dora_scale" in k for k in state_dict) | 
					
						
						|  | if is_dora_scale_present: | 
					
						
						|  | warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." | 
					
						
						|  | logger.warning(warn_msg) | 
					
						
						|  | state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} | 
					
						
						|  |  | 
					
						
						|  | is_original_hunyuan_video = any("img_attn_qkv" in k for k in state_dict) | 
					
						
						|  | if is_original_hunyuan_video: | 
					
						
						|  | state_dict = _convert_hunyuan_video_lora_to_diffusers(state_dict) | 
					
						
						|  |  | 
					
						
						|  | return state_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_lora_weights( | 
					
						
						|  | self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and | 
					
						
						|  | `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See | 
					
						
						|  | [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state | 
					
						
						|  | dict is loaded into `self.transformer`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | kwargs (`dict`, *optional*): | 
					
						
						|  | See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. | 
					
						
						|  | """ | 
					
						
						|  | if not USE_PEFT_BACKEND: | 
					
						
						|  | raise ValueError("PEFT backend is required for this method.") | 
					
						
						|  |  | 
					
						
						|  | low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) | 
					
						
						|  | if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if isinstance(pretrained_model_name_or_path_or_dict, dict): | 
					
						
						|  | pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | is_correct_format = all("lora" in key for key in state_dict.keys()) | 
					
						
						|  | if not is_correct_format: | 
					
						
						|  | raise ValueError("Invalid LoRA checkpoint.") | 
					
						
						|  |  | 
					
						
						|  | self.load_lora_into_transformer( | 
					
						
						|  | state_dict, | 
					
						
						|  | transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=self, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def load_lora_into_transformer( | 
					
						
						|  | cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | This will load the LoRA layers specified in `state_dict` into `transformer`. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | state_dict (`dict`): | 
					
						
						|  | A standard state dict containing the lora layer parameters. The keys can either be indexed directly | 
					
						
						|  | into the unet or prefixed with an additional `unet` which can be used to distinguish between text | 
					
						
						|  | encoder lora layers. | 
					
						
						|  | transformer (`HunyuanVideoTransformer3DModel`): | 
					
						
						|  | The Transformer model to load the LoRA layers into. | 
					
						
						|  | adapter_name (`str`, *optional*): | 
					
						
						|  | Adapter name to be used for referencing the loaded adapter model. If not specified, it will use | 
					
						
						|  | `default_{i}` where i is the total number of adapters being loaded. | 
					
						
						|  | low_cpu_mem_usage (`bool`, *optional*): | 
					
						
						|  | Speed up model loading by only loading the pretrained LoRA weights and not initializing the random | 
					
						
						|  | weights. | 
					
						
						|  | """ | 
					
						
						|  | if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Loading {cls.transformer_name}.") | 
					
						
						|  | transformer.load_lora_adapter( | 
					
						
						|  | state_dict, | 
					
						
						|  | network_alphas=None, | 
					
						
						|  | adapter_name=adapter_name, | 
					
						
						|  | _pipeline=_pipeline, | 
					
						
						|  | low_cpu_mem_usage=low_cpu_mem_usage, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  |  | 
					
						
						|  | def save_lora_weights( | 
					
						
						|  | cls, | 
					
						
						|  | save_directory: Union[str, os.PathLike], | 
					
						
						|  | transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, | 
					
						
						|  | is_main_process: bool = True, | 
					
						
						|  | weight_name: str = None, | 
					
						
						|  | save_function: Callable = None, | 
					
						
						|  | safe_serialization: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Save the LoRA parameters corresponding to the UNet and text encoder. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | save_directory (`str` or `os.PathLike`): | 
					
						
						|  | Directory to save LoRA parameters to. Will be created if it doesn't exist. | 
					
						
						|  | transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): | 
					
						
						|  | State dict of the LoRA layers corresponding to the `transformer`. | 
					
						
						|  | is_main_process (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether the process calling this is the main process or not. Useful during distributed training and you | 
					
						
						|  | need to call this function on all processes. In this case, set `is_main_process=True` only on the main | 
					
						
						|  | process to avoid race conditions. | 
					
						
						|  | save_function (`Callable`): | 
					
						
						|  | The function to use to save the state dictionary. Useful during distributed training when you need to | 
					
						
						|  | replace `torch.save` with another method. Can be configured with the environment variable | 
					
						
						|  | `DIFFUSERS_SAVE_MODE`. | 
					
						
						|  | safe_serialization (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | 
					
						
						|  | """ | 
					
						
						|  | state_dict = {} | 
					
						
						|  |  | 
					
						
						|  | if not transformer_lora_layers: | 
					
						
						|  | raise ValueError("You must pass `transformer_lora_layers`.") | 
					
						
						|  |  | 
					
						
						|  | if transformer_lora_layers: | 
					
						
						|  | state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cls.write_lora_layers( | 
					
						
						|  | state_dict=state_dict, | 
					
						
						|  | save_directory=save_directory, | 
					
						
						|  | is_main_process=is_main_process, | 
					
						
						|  | weight_name=weight_name, | 
					
						
						|  | save_function=save_function, | 
					
						
						|  | safe_serialization=safe_serialization, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def fuse_lora( | 
					
						
						|  | self, | 
					
						
						|  | components: List[str] = ["transformer"], | 
					
						
						|  | lora_scale: float = 1.0, | 
					
						
						|  | safe_fusing: bool = False, | 
					
						
						|  | adapter_names: Optional[List[str]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Fuses the LoRA parameters into the original parameters of the corresponding blocks. | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. | 
					
						
						|  | lora_scale (`float`, defaults to 1.0): | 
					
						
						|  | Controls how much to influence the outputs with the LoRA parameters. | 
					
						
						|  | safe_fusing (`bool`, defaults to `False`): | 
					
						
						|  | Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. | 
					
						
						|  | adapter_names (`List[str]`, *optional*): | 
					
						
						|  | Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```py | 
					
						
						|  | from diffusers import DiffusionPipeline | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | pipeline = DiffusionPipeline.from_pretrained( | 
					
						
						|  | "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | 
					
						
						|  | ).to("cuda") | 
					
						
						|  | pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") | 
					
						
						|  | pipeline.fuse_lora(lora_scale=0.7) | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  | super().fuse_lora( | 
					
						
						|  | components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs): | 
					
						
						|  | r""" | 
					
						
						|  | Reverses the effect of | 
					
						
						|  | [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). | 
					
						
						|  |  | 
					
						
						|  | <Tip warning={true}> | 
					
						
						|  |  | 
					
						
						|  | This is an experimental API. | 
					
						
						|  |  | 
					
						
						|  | </Tip> | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. | 
					
						
						|  | unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. | 
					
						
						|  | """ | 
					
						
						|  | super().unfuse_lora(components=components) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LoraLoaderMixin(StableDiffusionLoraLoaderMixin): | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead." | 
					
						
						|  | deprecate("LoraLoaderMixin", "1.0.0", deprecation_message) | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  |