Spaces:
Sleeping
Sleeping
| import argparse, os | |
| from pathlib import Path | |
| from datasets import load_dataset | |
| from transformers import ( | |
| AutoTokenizer, AutoModelForCausalLM, | |
| DataCollatorForLanguageModeling, Trainer, TrainingArguments | |
| ) | |
| import zipfile | |
| def parse_args(): | |
| ap = argparse.ArgumentParser() | |
| ap.add_argument("--dataset", required=True, help="Path to .jsonl") | |
| ap.add_argument("--output", required=True, help="Output model folder") | |
| ap.add_argument("--zip_path", required=True, help="Path to write .zip") | |
| ap.add_argument("--model_name", default="Salesforce/codegen-350M-multi") | |
| ap.add_argument("--epochs", type=float, default=1.0) | |
| ap.add_argument("--batch_size", type=int, default=2) | |
| ap.add_argument("--block_size", type=int, default=256) | |
| ap.add_argument("--learning_rate", type=float, default=5e-5) | |
| return ap.parse_args() | |
| def main(): | |
| a = parse_args() | |
| out_dir = Path(a.output).resolve() | |
| zip_path = Path(a.zip_path).resolve() | |
| out_dir.parent.mkdir(parents=True, exist_ok=True) | |
| print(f"📦 Loading dataset from: {a.dataset}", flush=True) | |
| ds = load_dataset("json", data_files=a.dataset, split="train") | |
| cols = ds.column_names | |
| print("🧾 Columns:", cols, flush=True) | |
| tok = AutoTokenizer.from_pretrained(a.model_name, use_fast=True) | |
| if tok.pad_token is None and tok.eos_token is not None: | |
| tok.pad_token = tok.eos_token | |
| model = AutoModelForCausalLM.from_pretrained(a.model_name) | |
| def to_text(batch): | |
| if "text" in batch: | |
| return batch["text"] | |
| if "prompt" in batch and "completion" in batch: | |
| return [str(p).rstrip() + "\n" + str(c) for p, c in zip(batch["prompt"], batch["completion"])] | |
| raise ValueError("Dataset must have 'text' or 'prompt' + 'completion'.") | |
| def tokenize(batch): | |
| texts = to_text(batch) | |
| return tok(texts, padding="max_length", truncation=True, max_length=a.block_size) | |
| print("🔁 Tokenizing…", flush=True) | |
| tokenized = ds.map(tokenize, batched=True, remove_columns=cols) | |
| collator = DataCollatorForLanguageModeling(tokenizer=tok, mlm=False) | |
| args = TrainingArguments( | |
| output_dir=str(out_dir), | |
| overwrite_output_dir=True, | |
| per_device_train_batch_size=a.batch_size, | |
| num_train_epochs=a.epochs, | |
| learning_rate=a.learning_rate, | |
| logging_steps=5, | |
| save_strategy="no", | |
| report_to=[], | |
| fp16=False, | |
| ) | |
| print("⚙ Trainer…", flush=True) | |
| trainer = Trainer(model=model, args=args, train_dataset=tokenized, | |
| tokenizer=tok, data_collator=collator) | |
| print("🚀 Training…", flush=True) | |
| trainer.train() | |
| print(f"💾 Saving to {out_dir}", flush=True) | |
| os.makedirs(out_dir, exist_ok=True) | |
| trainer.save_model(out_dir) | |
| tok.save_pretrained(out_dir) | |
| # Zip the folder | |
| if zip_path.exists(): | |
| zip_path.unlink() | |
| print(f"📦 Zipping → {zip_path.name}", flush=True) | |
| with zipfile.ZipFile(zip_path, "w", compression=zipfile.ZIP_DEFLATED) as z: | |
| for p in out_dir.rglob("*"): | |
| z.write(p, arcname=p.relative_to(out_dir)) | |
| print("✅ Done.", flush=True) | |
| if __name__ == "__main__": | |
| main() |