MediDoc / api.py
PenguinMan's picture
Upload api.py
a4c7002 verified
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import sqlite3
import os
import pytesseract
from PIL import Image
from pdf2image import convert_from_path
from groq import Groq
import json
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Configuration ---
DATABASE = "medidoc.db"
UPLOAD_FOLDER = "uploads"
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
# --- Groq Client Initialization ---
# Use environment variable for API key
GROQ_API_KEY = os.getenv("GROQ_API_KEY", "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")
client = Groq(api_key=GROQ_API_KEY)
# --- Database Setup ---
def init_db():
try:
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS documents (
id INTEGER PRIMARY KEY AUTOINCREMENT,
filename TEXT NOT NULL,
category TEXT,
document_date TEXT,
doctor_name TEXT,
hospital_name TEXT,
summary TEXT,
content TEXT
)
""")
conn.commit()
conn.close()
logger.info("Database initialized successfully")
except Exception as e:
logger.error(f"Database initialization failed: {e}")
init_db()
# --- FastAPI App ---
app = FastAPI(title="MediDoc API", version="1.0.0")
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, specify exact origins
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# --- Helper Functions ---
def extract_text_from_file(filepath: str) -> str:
"""Extract text from PDF or image files"""
try:
if not os.path.exists(filepath):
logger.error(f"File not found: {filepath}")
return ""
if filepath.lower().endswith(".pdf"):
pages = convert_from_path(filepath)
text = ""
for page in pages:
text += pytesseract.image_to_string(page) + "\n"
return text.strip()
else:
# Handle image files
with Image.open(filepath) as img:
text = pytesseract.image_to_string(img)
return text.strip()
except Exception as e:
logger.error(f"Error extracting text from {filepath}: {e}")
return ""
def process_with_llm(text: str) -> dict:
"""Analyze medical text using Groq's Llama model"""
if not text.strip():
return {
"category": "Empty Document",
"document_date": "N/A",
"doctor_name": "N/A",
"hospital_name": "N/A",
"summary": "Document appears to be empty or text could not be extracted.",
}
system_prompt = """
You are an expert medical data extraction assistant. Analyze the provided text from a medical document and extract key information.
Respond ONLY with a valid JSON object containing exactly these keys:
- "category": Choose from "Prescription", "Lab Report", "Medical Bill", "Pharmacy Bill", "Discharge Summary", "Consultation Notes", "Other"
- "document_date": Date in YYYY-MM-DD format. If not found, use "N/A"
- "doctor_name": Full name of the doctor. If not found, use "N/A"
- "hospital_name": Name of hospital/clinic. If not found, use "N/A"
- "summary": A brief, clear summary in 1-2 sentences describing what this document is about
Return only the JSON object, no other text.
"""
fallback_response = {
"category": "Other",
"document_date": "N/A",
"doctor_name": "N/A",
"hospital_name": "N/A",
"summary": "Medical document processed but specific information could not be extracted.",
}
try:
completion = client.chat.completions.create(
model="llama-3.1-8b-instant",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Medical document text:\n\n{text[:2000]}"} # Limit text length
],
temperature=0.1,
max_tokens=300,
top_p=1,
stream=False,
)
response_content = completion.choices[0].message.content.strip()
# Clean up the response
if response_content.startswith("```json"):
response_content = response_content[7:]
if response_content.endswith("```"):
response_content = response_content[:-3]
response_content = response_content.strip()
parsed_response = json.loads(response_content)
# Validate required keys
required_keys = ["category", "document_date", "doctor_name", "hospital_name", "summary"]
for key in required_keys:
if key not in parsed_response:
parsed_response[key] = "N/A"
return parsed_response
except json.JSONDecodeError as e:
logger.error(f"JSON Parsing Error: {e}\nRaw Response: {response_content}")
return fallback_response
except Exception as e:
logger.error(f"Error with Groq API: {e}")
return fallback_response
# --- API Endpoints ---
@app.get("/")
async def root():
return {"message": "MediDoc API is running"}
@app.post("/upload/")
async def upload_document(file: UploadFile = File(...)):
"""Upload and process a medical document"""
try:
# Validate file type
allowed_types = ['application/pdf', 'image/jpeg', 'image/jpg', 'image/png']
if file.content_type not in allowed_types:
raise HTTPException(status_code=400, detail="Only PDF and image files are allowed")
# Save uploaded file
filepath = os.path.join(UPLOAD_FOLDER, file.filename)
with open(filepath, "wb") as buffer:
content = await file.read()
if not content:
raise HTTPException(status_code=400, detail="Uploaded file is empty")
buffer.write(content)
logger.info(f"File saved: {filepath}")
# Extract text
text = extract_text_from_file(filepath)
if not text.strip():
# Clean up the file
os.remove(filepath)
raise HTTPException(status_code=400, detail="Could not extract text from the uploaded file")
# Process with LLM
processed_data = process_with_llm(text)
# Save to database
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute(
"""INSERT INTO documents
(filename, category, document_date, doctor_name, hospital_name, summary, content)
VALUES (?, ?, ?, ?, ?, ?, ?)""",
(
file.filename,
processed_data.get("category", "N/A"),
processed_data.get("document_date", "N/A"),
processed_data.get("doctor_name", "N/A"),
processed_data.get("hospital_name", "N/A"),
processed_data.get("summary", "N/A"),
text
),
)
conn.commit()
conn.close()
logger.info(f"Document processed successfully: {file.filename}")
return {"filename": file.filename, "info": processed_data, "status": "success"}
except HTTPException:
raise
except Exception as e:
logger.error(f"Unexpected error processing file: {e}")
raise HTTPException(status_code=500, detail="Internal server error occurred while processing the file")
@app.get("/documents/")
def get_documents():
"""Retrieve all processed documents"""
try:
conn = sqlite3.connect(DATABASE)
conn.row_factory = sqlite3.Row
cursor = conn.cursor()
cursor.execute("""
SELECT id, filename, category, document_date, doctor_name, hospital_name, summary
FROM documents
ORDER BY
CASE WHEN document_date = 'N/A' THEN 1 ELSE 0 END,
document_date DESC
""")
documents = [dict(row) for row in cursor.fetchall()]
conn.close()
return {"documents": documents, "count": len(documents)}
except Exception as e:
logger.error(f"Error retrieving documents: {e}")
raise HTTPException(status_code=500, detail="Could not retrieve documents")
class SearchResult(BaseModel):
answer: str
sources: list
@app.get("/search/", response_model=SearchResult)
def search_medical_history(query: str):
"""Search through medical documents using natural language"""
if not query.strip():
raise HTTPException(status_code=400, detail="Search query cannot be empty")
try:
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("SELECT filename, content, summary, category FROM documents")
all_docs = cursor.fetchall()
conn.close()
if not all_docs:
return {"answer": "No documents have been uploaded yet. Please upload some medical documents first.", "sources": []}
# Prepare context for the AI
context_parts = []
for i, doc in enumerate(all_docs):
filename, content, summary, category = doc
context_parts.append(f"Document {i+1}: {filename}\nCategory: {category}\nSummary: {summary}\nContent: {content[:1500]}")
context = "\n\n---\n\n".join(context_parts)
system_prompt = f"""
You are a medical assistant helping a patient understand their medical history.
Answer the user's question based ONLY on the provided medical documents.
Guidelines:
- Provide a clear, helpful answer
- Mention specific document names when referencing information
- If information is not available in the documents, say so clearly
- Be concise but informative
- Use medical terminology appropriately but explain complex terms
Available Documents:
{context}
"""
completion = client.chat.completions.create(
model="llama-3.1-8b-instant",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": query}
],
temperature=0.2,
max_tokens=800,
)
answer = completion.choices[0].message.content
# Find relevant sources mentioned in the answer
sources = []
for doc in all_docs:
filename = doc[0]
if filename.lower() in answer.lower():
sources.append({
"filename": filename,
"summary": doc[2],
"category": doc[3]
})
return {"answer": answer, "sources": sources}
except Exception as e:
logger.error(f"Error during search: {e}")
raise HTTPException(status_code=500, detail="Search service is currently unavailable")
@app.get("/health")
def health_check():
"""Health check endpoint"""
return {"status": "healthy", "database": "connected"}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)