Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
emotional sliders
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import os
|
|
2 |
import sys
|
3 |
import time
|
4 |
import requests
|
|
|
5 |
from subprocess import Popen, PIPE
|
6 |
import threading
|
7 |
from huggingface_hub import hf_hub_download
|
@@ -143,7 +144,18 @@ def load_model(voice_model_name):
|
|
143 |
|
144 |
return
|
145 |
|
146 |
-
def predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
# grab only the first 1000 characters
|
148 |
input_text = input_text[:1000]
|
149 |
|
@@ -159,8 +171,16 @@ def predict(input_text, pacing, voice, lang):
|
|
159 |
use_sr = 0
|
160 |
use_cleanup = 0
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
data = {
|
163 |
-
'pluginsContext':
|
164 |
'modelType': model_type,
|
165 |
# pad with whitespaces as a workaround to avoid cutoffs
|
166 |
'sequence': input_text.center(len(input_text) + 2, ' '),
|
@@ -192,6 +212,12 @@ input_textbox = gr.Textbox(
|
|
192 |
autofocus=True
|
193 |
)
|
194 |
pacing_slider = gr.Slider(0.5, 2.0, value=1.0, step=0.1, label="Duration")
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
voice_radio = gr.Radio(
|
196 |
voice_models,
|
197 |
value=voice_models[0],
|
@@ -220,9 +246,15 @@ gradio_app = gr.Interface(
|
|
220 |
predict,
|
221 |
[
|
222 |
input_textbox,
|
223 |
-
pacing_slider,
|
224 |
voice_radio,
|
225 |
-
language_radio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
],
|
227 |
outputs=gr.Audio(label="22kHz audio output", type="filepath"),
|
228 |
title="xVASynth (WIP)",
|
|
|
2 |
import sys
|
3 |
import time
|
4 |
import requests
|
5 |
+
import json
|
6 |
from subprocess import Popen, PIPE
|
7 |
import threading
|
8 |
from huggingface_hub import hf_hub_download
|
|
|
144 |
|
145 |
return
|
146 |
|
147 |
+
def predict(
|
148 |
+
input_text,
|
149 |
+
voice,
|
150 |
+
lang,
|
151 |
+
pacing,
|
152 |
+
pitch,
|
153 |
+
energy,
|
154 |
+
anger,
|
155 |
+
happy,
|
156 |
+
sad,
|
157 |
+
surprise
|
158 |
+
):
|
159 |
# grab only the first 1000 characters
|
160 |
input_text = input_text[:1000]
|
161 |
|
|
|
171 |
use_sr = 0
|
172 |
use_cleanup = 0
|
173 |
|
174 |
+
pluginsContext = {}
|
175 |
+
pluginsContext["mantella_settings"] = {
|
176 |
+
"emAngry": anger if anger > 0 else 0,
|
177 |
+
"emHappy": happy if happy > 0 else 0,
|
178 |
+
"emSad": sad if sad > 0 else 0,
|
179 |
+
"emSurprise": surprise if surprise > 0 else 0
|
180 |
+
}
|
181 |
+
|
182 |
data = {
|
183 |
+
'pluginsContext': json.dumps(pluginsContext),
|
184 |
'modelType': model_type,
|
185 |
# pad with whitespaces as a workaround to avoid cutoffs
|
186 |
'sequence': input_text.center(len(input_text) + 2, ' '),
|
|
|
212 |
autofocus=True
|
213 |
)
|
214 |
pacing_slider = gr.Slider(0.5, 2.0, value=1.0, step=0.1, label="Duration")
|
215 |
+
pitch_slider = gr.Slider(0, 1.0, value=0.5, step=0.05, label="Pitch", visible=False)
|
216 |
+
energy_slider = gr.Slider(0.1, 1.0, value=1.0, step=0.05, label="Energy", visible=False)
|
217 |
+
anger_slider = gr.Slider(0, 1.0, value=1.0, step=0.05, label="๐ Anger")
|
218 |
+
happy_slider = gr.Slider(0, 1.0, value=1.0, step=0.05, label="๐ Happy")
|
219 |
+
sad_slider = gr.Slider(0, 1.0, value=1.0, step=0.05, label="๐ญ Sad")
|
220 |
+
surprise_slider = gr.Slider(0, 1.0, value=1.0, step=0.05, label="๐ฎ Surprise")
|
221 |
voice_radio = gr.Radio(
|
222 |
voice_models,
|
223 |
value=voice_models[0],
|
|
|
246 |
predict,
|
247 |
[
|
248 |
input_textbox,
|
|
|
249 |
voice_radio,
|
250 |
+
language_radio,
|
251 |
+
pacing_slider,
|
252 |
+
pitch_slider,
|
253 |
+
energy_slider,
|
254 |
+
anger_slider,
|
255 |
+
happy_slider,
|
256 |
+
sad_slider,
|
257 |
+
surprise_slider
|
258 |
],
|
259 |
outputs=gr.Audio(label="22kHz audio output", type="filepath"),
|
260 |
title="xVASynth (WIP)",
|