Spaces:
Running
on
Zero
Running
on
Zero
from cached_path import cached_path | |
import torch | |
torch.manual_seed(0) | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cudnn.deterministic = True | |
import random | |
random.seed(0) | |
import numpy as np | |
np.random.seed(0) | |
import nltk | |
nltk.download('punkt') | |
nltk.download('punkt_data') | |
# load packages | |
import time | |
import random | |
import yaml | |
from munch import Munch | |
import numpy as np | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import torchaudio | |
import librosa | |
from nltk.tokenize import word_tokenize | |
from models import * | |
from utils import * | |
from text_utils import TextCleaner | |
textclenaer = TextCleaner() | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
to_mel = torchaudio.transforms.MelSpectrogram( | |
n_mels=80, n_fft=2048, win_length=1200, hop_length=300) | |
mean, std = -4, 4 | |
def length_to_mask(lengths): | |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
return mask | |
def preprocess(wave): | |
wave_tensor = torch.from_numpy(wave).float() | |
mel_tensor = to_mel(wave_tensor) | |
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std | |
return mel_tensor | |
def compute_style(ref_dicts): | |
reference_embeddings = {} | |
for key, path in ref_dicts.items(): | |
wave, sr = librosa.load(path, sr=24000) | |
audio, index = librosa.effects.trim(wave, top_db=30) | |
if sr != 24000: | |
audio = librosa.resample(audio, sr, 24000) | |
mel_tensor = preprocess(audio).to(device) | |
with torch.no_grad(): | |
ref = model.style_encoder(mel_tensor.unsqueeze(1)) | |
reference_embeddings[key] = (ref.squeeze(1), audio) | |
return reference_embeddings | |
# load phonemizer | |
import phonemizer | |
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True, words_mismatch='ignore') | |
# phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt'))) | |
config = yaml.safe_load(open(str(cached_path('hf://yl4579/StyleTTS2-LJSpeech/Models/LJSpeech/config.yml')))) | |
# load pretrained ASR model | |
ASR_config = config.get('ASR_config', False) | |
ASR_path = config.get('ASR_path', False) | |
text_aligner = load_ASR_models(ASR_path, ASR_config) | |
# load pretrained F0 model | |
F0_path = config.get('F0_path', False) | |
pitch_extractor = load_F0_models(F0_path) | |
# load BERT model | |
from Utils.PLBERT.util import load_plbert | |
BERT_path = config.get('PLBERT_dir', False) | |
plbert = load_plbert(BERT_path) | |
model = build_model(recursive_munch(config['model_params']), text_aligner, pitch_extractor, plbert) | |
_ = [model[key].eval() for key in model] | |
_ = [model[key].to(device) for key in model] | |
# params_whole = torch.load("Models/LJSpeech/epoch_2nd_00100.pth", map_location='cpu') | |
params_whole = torch.load(str(cached_path('hf://yl4579/StyleTTS2-LJSpeech/Models/LJSpeech/epoch_2nd_00100.pth')), map_location='cpu') | |
params = params_whole['net'] | |
for key in model: | |
if key in params: | |
print('%s loaded' % key) | |
try: | |
model[key].load_state_dict(params[key]) | |
except: | |
from collections import OrderedDict | |
state_dict = params[key] | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k[7:] # remove `module.` | |
new_state_dict[name] = v | |
# load params | |
model[key].load_state_dict(new_state_dict, strict=False) | |
# except: | |
# _load(params[key], model[key]) | |
_ = [model[key].eval() for key in model] | |
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule | |
sampler = DiffusionSampler( | |
model.diffusion.diffusion, | |
sampler=ADPM2Sampler(), | |
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters | |
clamp=False | |
) | |
def inference(text, noise, diffusion_steps=5, embedding_scale=1): | |
text = text.strip() | |
text = text.replace('"', '') | |
ps = global_phonemizer.phonemize([text]) | |
ps = word_tokenize(ps[0]) | |
ps = ' '.join(ps) | |
tokens = textclenaer(ps) | |
tokens.insert(0, 0) | |
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) | |
with torch.no_grad(): | |
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device) | |
text_mask = length_to_mask(input_lengths).to(tokens.device) | |
t_en = model.text_encoder(tokens, input_lengths, text_mask) | |
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) | |
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
s_pred = sampler(noise, | |
embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps, | |
embedding_scale=embedding_scale).squeeze(0) | |
s = s_pred[:, 128:] | |
ref = s_pred[:, :128] | |
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) | |
x, _ = model.predictor.lstm(d) | |
duration = model.predictor.duration_proj(x) | |
duration = torch.sigmoid(duration).sum(axis=-1) | |
pred_dur = torch.round(duration.squeeze()).clamp(min=1) | |
pred_dur[-1] += 5 | |
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) | |
c_frame = 0 | |
for i in range(pred_aln_trg.size(0)): | |
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 | |
c_frame += int(pred_dur[i].data) | |
# encode prosody | |
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) | |
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) | |
out = model.decoder((t_en @ pred_aln_trg.unsqueeze(0).to(device)), | |
F0_pred, N_pred, ref.squeeze().unsqueeze(0)) | |
return out.squeeze().cpu().numpy() | |
def LFinference(text, s_prev, noise, alpha=0.7, diffusion_steps=5, embedding_scale=1): | |
text = text.strip() | |
text = text.replace('"', '') | |
ps = global_phonemizer.phonemize([text]) | |
ps = word_tokenize(ps[0]) | |
ps = ' '.join(ps) | |
tokens = textclenaer(ps) | |
tokens.insert(0, 0) | |
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) | |
with torch.no_grad(): | |
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device) | |
text_mask = length_to_mask(input_lengths).to(tokens.device) | |
t_en = model.text_encoder(tokens, input_lengths, text_mask) | |
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) | |
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
s_pred = sampler(noise, | |
embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps, | |
embedding_scale=embedding_scale).squeeze(0) | |
if s_prev is not None: | |
# convex combination of previous and current style | |
s_pred = alpha * s_prev + (1 - alpha) * s_pred | |
s = s_pred[:, 128:] | |
ref = s_pred[:, :128] | |
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) | |
x, _ = model.predictor.lstm(d) | |
duration = model.predictor.duration_proj(x) | |
duration = torch.sigmoid(duration).sum(axis=-1) | |
pred_dur = torch.round(duration.squeeze()).clamp(min=1) | |
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) | |
c_frame = 0 | |
for i in range(pred_aln_trg.size(0)): | |
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 | |
c_frame += int(pred_dur[i].data) | |
# encode prosody | |
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) | |
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) | |
out = model.decoder((t_en @ pred_aln_trg.unsqueeze(0).to(device)), | |
F0_pred, N_pred, ref.squeeze().unsqueeze(0)) | |
return out.squeeze().cpu().numpy(), s_pred |