Spaces:
Running
on
Zero
Running
on
Zero
from cached_path import cached_path | |
from dp.phonemizer import Phonemizer | |
print("NLTK") | |
import nltk | |
nltk.download('punkt') | |
print("SCIPY") | |
from scipy.io.wavfile import write | |
print("TORCH STUFF") | |
import torch | |
print("START") | |
torch.manual_seed(0) | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cudnn.deterministic = True | |
import random | |
random.seed(0) | |
import numpy as np | |
np.random.seed(0) | |
# load packages | |
import time | |
import random | |
import yaml | |
from munch import Munch | |
import numpy as np | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import torchaudio | |
import librosa | |
from nltk.tokenize import word_tokenize | |
from models import * | |
from utils import * | |
from text_utils import TextCleaner | |
textclenaer = TextCleaner() | |
to_mel = torchaudio.transforms.MelSpectrogram( | |
n_mels=80, n_fft=2048, win_length=1200, hop_length=300) | |
mean, std = -4, 4 | |
def length_to_mask(lengths): | |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
return mask | |
def preprocess(wave): | |
wave_tensor = torch.from_numpy(wave).float() | |
mel_tensor = to_mel(wave_tensor) | |
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std | |
return mel_tensor | |
def compute_style(path): | |
wave, sr = librosa.load(path, sr=24000) | |
audio, index = librosa.effects.trim(wave, top_db=30) | |
if sr != 24000: | |
audio = librosa.resample(audio, sr, 24000) | |
mel_tensor = preprocess(audio).to(device) | |
with torch.no_grad(): | |
ref_s = model.style_encoder(mel_tensor.unsqueeze(1)) | |
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1)) | |
return torch.cat([ref_s, ref_p], dim=1) | |
device = 'cpu' | |
if torch.cuda.is_available(): | |
device = 'cuda' | |
elif torch.backends.mps.is_available(): | |
print("MPS would be available but cannot be used rn") | |
# device = 'mps' | |
# global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True) | |
phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt'))) | |
config = yaml.safe_load(open("Models/LibriTTS/config.yml")) | |
# load pretrained ASR model | |
ASR_config = config.get('ASR_config', False) | |
ASR_path = config.get('ASR_path', False) | |
text_aligner = load_ASR_models(ASR_path, ASR_config) | |
# load pretrained F0 model | |
F0_path = config.get('F0_path', False) | |
pitch_extractor = load_F0_models(F0_path) | |
# load BERT model | |
from Utils.PLBERT.util import load_plbert | |
BERT_path = config.get('PLBERT_dir', False) | |
plbert = load_plbert(BERT_path) | |
model_params = recursive_munch(config['model_params']) | |
model = build_model(model_params, text_aligner, pitch_extractor, plbert) | |
_ = [model[key].eval() for key in model] | |
_ = [model[key].to(device) for key in model] | |
params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu') | |
params = params_whole['net'] | |
for key in model: | |
if key in params: | |
print('%s loaded' % key) | |
try: | |
model[key].load_state_dict(params[key]) | |
except: | |
from collections import OrderedDict | |
state_dict = params[key] | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k[7:] # remove `module.` | |
new_state_dict[name] = v | |
# load params | |
model[key].load_state_dict(new_state_dict, strict=False) | |
# except: | |
# _load(params[key], model[key]) | |
_ = [model[key].eval() for key in model] | |
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule | |
sampler = DiffusionSampler( | |
model.diffusion.diffusion, | |
sampler=ADPM2Sampler(), | |
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters | |
clamp=False | |
) | |
def inference(text, ref_s, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1): | |
text = text.strip() | |
ps = phonemizer([text], lang='en_us') | |
ps = word_tokenize(ps[0]) | |
ps = ' '.join(ps) | |
tokens = textclenaer(ps) | |
tokens.insert(0, 0) | |
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) | |
with torch.no_grad(): | |
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) | |
text_mask = length_to_mask(input_lengths).to(device) | |
t_en = model.text_encoder(tokens, input_lengths, text_mask) | |
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) | |
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device), | |
embedding=bert_dur, | |
embedding_scale=embedding_scale, | |
features=ref_s, # reference from the same speaker as the embedding | |
num_steps=diffusion_steps).squeeze(1) | |
s = s_pred[:, 128:] | |
ref = s_pred[:, :128] | |
ref = alpha * ref + (1 - alpha) * ref_s[:, :128] | |
s = beta * s + (1 - beta) * ref_s[:, 128:] | |
d = model.predictor.text_encoder(d_en, | |
s, input_lengths, text_mask) | |
x, _ = model.predictor.lstm(d) | |
duration = model.predictor.duration_proj(x) | |
duration = torch.sigmoid(duration).sum(axis=-1) | |
pred_dur = torch.round(duration.squeeze()).clamp(min=1) | |
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) | |
c_frame = 0 | |
for i in range(pred_aln_trg.size(0)): | |
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 | |
c_frame += int(pred_dur[i].data) | |
# encode prosody | |
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) | |
if model_params.decoder.type == "hifigan": | |
asr_new = torch.zeros_like(en) | |
asr_new[:, :, 0] = en[:, :, 0] | |
asr_new[:, :, 1:] = en[:, :, 0:-1] | |
en = asr_new | |
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) | |
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device)) | |
if model_params.decoder.type == "hifigan": | |
asr_new = torch.zeros_like(asr) | |
asr_new[:, :, 0] = asr[:, :, 0] | |
asr_new[:, :, 1:] = asr[:, :, 0:-1] | |
asr = asr_new | |
out = model.decoder(asr, | |
F0_pred, N_pred, ref.squeeze().unsqueeze(0)) | |
return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later | |
def LFinference(text, s_prev, ref_s, alpha = 0.3, beta = 0.7, t = 0.7, diffusion_steps=5, embedding_scale=1): | |
text = text.strip() | |
ps = phonemizer([text], lang='en_us') | |
ps = word_tokenize(ps[0]) | |
ps = ' '.join(ps) | |
ps = ps.replace('``', '"') | |
ps = ps.replace("''", '"') | |
tokens = textclenaer(ps) | |
tokens.insert(0, 0) | |
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) | |
with torch.no_grad(): | |
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) | |
text_mask = length_to_mask(input_lengths).to(device) | |
t_en = model.text_encoder(tokens, input_lengths, text_mask) | |
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) | |
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device), | |
embedding=bert_dur, | |
embedding_scale=embedding_scale, | |
features=ref_s, # reference from the same speaker as the embedding | |
num_steps=diffusion_steps).squeeze(1) | |
if s_prev is not None: | |
# convex combination of previous and current style | |
s_pred = t * s_prev + (1 - t) * s_pred | |
s = s_pred[:, 128:] | |
ref = s_pred[:, :128] | |
ref = alpha * ref + (1 - alpha) * ref_s[:, :128] | |
s = beta * s + (1 - beta) * ref_s[:, 128:] | |
s_pred = torch.cat([ref, s], dim=-1) | |
d = model.predictor.text_encoder(d_en, | |
s, input_lengths, text_mask) | |
x, _ = model.predictor.lstm(d) | |
duration = model.predictor.duration_proj(x) | |
duration = torch.sigmoid(duration).sum(axis=-1) | |
pred_dur = torch.round(duration.squeeze()).clamp(min=1) | |
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) | |
c_frame = 0 | |
for i in range(pred_aln_trg.size(0)): | |
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 | |
c_frame += int(pred_dur[i].data) | |
# encode prosody | |
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) | |
if model_params.decoder.type == "hifigan": | |
asr_new = torch.zeros_like(en) | |
asr_new[:, :, 0] = en[:, :, 0] | |
asr_new[:, :, 1:] = en[:, :, 0:-1] | |
en = asr_new | |
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) | |
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device)) | |
if model_params.decoder.type == "hifigan": | |
asr_new = torch.zeros_like(asr) | |
asr_new[:, :, 0] = asr[:, :, 0] | |
asr_new[:, :, 1:] = asr[:, :, 0:-1] | |
asr = asr_new | |
out = model.decoder(asr, | |
F0_pred, N_pred, ref.squeeze().unsqueeze(0)) | |
return out.squeeze().cpu().numpy()[..., :-100], s_pred # weird pulse at the end of the model, need to be fixed later | |
def STinference(text, ref_s, ref_text, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1): | |
text = text.strip() | |
ps = phonemizer([text], lang='en_us') | |
ps = word_tokenize(ps[0]) | |
ps = ' '.join(ps) | |
tokens = textclenaer(ps) | |
tokens.insert(0, 0) | |
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) | |
ref_text = ref_text.strip() | |
ps = phonemizer([ref_text], lang='en_us') | |
ps = word_tokenize(ps[0]) | |
ps = ' '.join(ps) | |
ref_tokens = textclenaer(ps) | |
ref_tokens.insert(0, 0) | |
ref_tokens = torch.LongTensor(ref_tokens).to(device).unsqueeze(0) | |
with torch.no_grad(): | |
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) | |
text_mask = length_to_mask(input_lengths).to(device) | |
t_en = model.text_encoder(tokens, input_lengths, text_mask) | |
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) | |
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
ref_input_lengths = torch.LongTensor([ref_tokens.shape[-1]]).to(device) | |
ref_text_mask = length_to_mask(ref_input_lengths).to(device) | |
ref_bert_dur = model.bert(ref_tokens, attention_mask=(~ref_text_mask).int()) | |
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device), | |
embedding=bert_dur, | |
embedding_scale=embedding_scale, | |
features=ref_s, # reference from the same speaker as the embedding | |
num_steps=diffusion_steps).squeeze(1) | |
s = s_pred[:, 128:] | |
ref = s_pred[:, :128] | |
ref = alpha * ref + (1 - alpha) * ref_s[:, :128] | |
s = beta * s + (1 - beta) * ref_s[:, 128:] | |
d = model.predictor.text_encoder(d_en, | |
s, input_lengths, text_mask) | |
x, _ = model.predictor.lstm(d) | |
duration = model.predictor.duration_proj(x) | |
duration = torch.sigmoid(duration).sum(axis=-1) | |
pred_dur = torch.round(duration.squeeze()).clamp(min=1) | |
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) | |
c_frame = 0 | |
for i in range(pred_aln_trg.size(0)): | |
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 | |
c_frame += int(pred_dur[i].data) | |
# encode prosody | |
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) | |
if model_params.decoder.type == "hifigan": | |
asr_new = torch.zeros_like(en) | |
asr_new[:, :, 0] = en[:, :, 0] | |
asr_new[:, :, 1:] = en[:, :, 0:-1] | |
en = asr_new | |
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) | |
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device)) | |
if model_params.decoder.type == "hifigan": | |
asr_new = torch.zeros_like(asr) | |
asr_new[:, :, 0] = asr[:, :, 0] | |
asr_new[:, :, 1:] = asr[:, :, 0:-1] | |
asr = asr_new | |
out = model.decoder(asr, | |
F0_pred, N_pred, ref.squeeze().unsqueeze(0)) | |
return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later | |
print("Time to synthesize!") | |
ref_s = compute_style('./voice/voice.wav') | |
while True: | |
text = input("What to say? > ") | |
start = time.time() | |
wav = inference(text, ref_s, alpha=0.3, beta=0.7, diffusion_steps=15, embedding_scale=1) | |
rtf = (time.time() - start) / (len(wav) / 24000) | |
print(f"RTF = {rtf:5f}") | |
print(k + ' Synthesized:') | |
# display(ipd.Audio(wav, rate=24000, normalize=False)) | |
write('result.wav', 24000, wav) | |
print("Saved to result.wav") |