DeepMoji / app.py
Pendrokar's picture
add emojis
b32681b
raw
history blame
2.53 kB
from __future__ import print_function, division, unicode_literals
import gradio as gr
import sys
from os.path import abspath, dirname
import json
import numpy as np
from torchmoji.sentence_tokenizer import SentenceTokenizer
from torchmoji.model_def import torchmoji_emojis
from emoji import emojize
from huggingface_hub import hf_hub_download
model_name = "Uberduck/torchmoji"
model_path = hf_hub_download(repo_id=model_name, filename="pytorch_model.bin")
vocab_path = hf_hub_download(repo_id=model_name, filename="vocabulary.json")
emoji_codes = []
with open('./data/emoji_codes.json', 'r') as f:
emoji_codes = json.load(f)
def top_elements(array, k):
ind = np.argpartition(array, -k)[-k:]
return ind[np.argsort(array[ind])][::-1]
maxlen = 30
with open(vocab_path, 'r') as f:
vocabulary = json.load(f)
st = SentenceTokenizer(vocabulary, maxlen)
model = torchmoji_emojis(model_path)
def predict(deepmoji_analysis, emoji_count):
return_label = {}
tokenized, _, _ = st.tokenize_sentences([deepmoji_analysis])
prob = model(tokenized)
for prob in [prob]:
# Find top emojis for each sentence. Emoji ids (0-63)
# correspond to the mapping in emoji_overview.png
# at the root of the torchMoji repo.
scores = []
for i, t in enumerate([deepmoji_analysis]):
t_prob = prob[i]
# sort top
ind_top_ids = top_elements(t_prob, emoji_count)
for ind in ind_top_ids:
# unicode emoji + :alias:
label_emoji = emojize(emoji_codes[str(ind)], language="alias")
label_name = label_emoji + emoji_codes[str(ind)]
# propability
label_prob = t_prob[ind]
return_label[label_name] = label_prob
return return_label
input_textbox = gr.Textbox(
label="English Text",
lines=1,
value=""
)
slider = gr.Slider(1, 64, value=5, step=1, label="Top # Emoji", info="Choose between 1 and 64 top emojis to show")
gradio_app = gr.Interface(
predict,
[
input_textbox,
slider,
],
outputs="label",
examples=[
["You love hurting me, huh?", 5],
["I know good movies, this ain't one", 5],
["It was fun, but I'm not going to miss you", 5],
["My flight is delayed.. amazing.", 5],
["What is happening to me??", 5],
["This is the shit!", 5],
["This is shit!", 5],
],
live=True
)
if __name__ == "__main__":
gradio_app.launch()