HYDRAS_Latte-1 / datasets /taichi_datasets.py
maxin-cn's picture
Upload folder using huggingface_hub
94bafa8 verified
import os
import torch
import random
import torch.utils.data as data
import numpy as np
import io
import json
from PIL import Image
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG']
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
class Taichi(data.Dataset):
def __init__(self, configs, transform, temporal_sample=None, train=True):
self.configs = configs
self.data_path = configs.data_path
self.transform = transform
self.temporal_sample = temporal_sample
self.target_video_len = self.configs.num_frames
self.frame_interval = self.configs.frame_interval
self.data_all = self.load_video_frames(self.data_path)
self.video_num = len(self.data_all)
def __getitem__(self, index):
vframes = self.data_all[index]
total_frames = len(vframes)
# Sampling video frames
start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
assert end_frame_ind - start_frame_ind >= self.target_video_len
frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, self.target_video_len, dtype=int)
select_video_frames = vframes[frame_indice[0]: frame_indice[-1]+1: self.frame_interval]
video_frames = []
for path in select_video_frames:
image = Image.open(path).convert('RGB')
video_frame = torch.as_tensor(np.array(image, dtype=np.uint8, copy=True)).unsqueeze(0)
video_frames.append(video_frame)
video_clip = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2)
video_clip = self.transform(video_clip)
# return video_clip, 1
return {'video': video_clip, 'video_name': 1}
def __len__(self):
return self.video_num
def load_video_frames(self, dataroot):
data_all = []
frame_list = os.walk(dataroot)
for _, meta in enumerate(frame_list):
root = meta[0]
try:
frames = sorted(meta[2], key=lambda item: int(item.split('.')[0].split('_')[-1]))
except:
print(meta[0], meta[2])
frames = [os.path.join(root, item) for item in frames if is_image_file(item)]
# if len(frames) > max(0, self.sequence_length * self.sample_every_n_frames):
if len(frames) != 0:
data_all.append(frames)
# self.video_num = len(data_all)
return data_all
if __name__ == '__main__':
import argparse
import torchvision
import video_transforms
import torch.utils.data as data
from torchvision import transforms
from torchvision.utils import save_image
parser = argparse.ArgumentParser()
parser.add_argument("--num_frames", type=int, default=16)
parser.add_argument("--frame_interval", type=int, default=4)
parser.add_argument("--load_fron_ceph", type=bool, default=True)
parser.add_argument("--data-path", type=str, default="/path/to/datasets/taichi/taichi-256/frames/train")
config = parser.parse_args()
target_video_len = config.num_frames
temporal_sample = video_transforms.TemporalRandomCrop(target_video_len * config.frame_interval)
trans = transforms.Compose([
video_transforms.ToTensorVideo(),
video_transforms.RandomHorizontalFlipVideo(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
taichi_dataset = Taichi(config, transform=trans, temporal_sample=temporal_sample)
taichi_dataloader = data.DataLoader(dataset=taichi_dataset, batch_size=1, shuffle=False, num_workers=1)
for i, video_data in enumerate(taichi_dataloader):
print(video_data['video'].shape)
# print(video_data.dtype)
# for i in range(target_video_len):
# save_image(video_data[0][i], os.path.join('./test_data', '%04d.png' % i), normalize=True, value_range=(-1, 1))
# video_ = ((video_data[0] * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
# torchvision.io.write_video('./test_data' + 'test.mp4', video_, fps=8)
# exit()