Spaces:
Running
Running
import os | |
import re | |
import json | |
import torch | |
import decord | |
import torchvision | |
import numpy as np | |
from PIL import Image | |
from einops import rearrange | |
from typing import Dict, List, Tuple | |
class_labels_map = None | |
cls_sample_cnt = None | |
class_labels_map = None | |
cls_sample_cnt = None | |
def temporal_sampling(frames, start_idx, end_idx, num_samples): | |
""" | |
Given the start and end frame index, sample num_samples frames between | |
the start and end with equal interval. | |
Args: | |
frames (tensor): a tensor of video frames, dimension is | |
`num video frames` x `channel` x `height` x `width`. | |
start_idx (int): the index of the start frame. | |
end_idx (int): the index of the end frame. | |
num_samples (int): number of frames to sample. | |
Returns: | |
frames (tersor): a tensor of temporal sampled video frames, dimension is | |
`num clip frames` x `channel` x `height` x `width`. | |
""" | |
index = torch.linspace(start_idx, end_idx, num_samples) | |
index = torch.clamp(index, 0, frames.shape[0] - 1).long() | |
frames = torch.index_select(frames, 0, index) | |
return frames | |
def get_filelist(file_path): | |
Filelist = [] | |
for home, dirs, files in os.walk(file_path): | |
for filename in files: | |
# 文件名列表,包含完整路径 | |
Filelist.append(os.path.join(home, filename)) | |
# # 文件名列表,只包含文件名 | |
# Filelist.append( filename) | |
return Filelist | |
def load_annotation_data(data_file_path): | |
with open(data_file_path, 'r') as data_file: | |
return json.load(data_file) | |
def get_class_labels(num_class, anno_pth='./k400_classmap.json'): | |
global class_labels_map, cls_sample_cnt | |
if class_labels_map is not None: | |
return class_labels_map, cls_sample_cnt | |
else: | |
cls_sample_cnt = {} | |
class_labels_map = load_annotation_data(anno_pth) | |
for cls in class_labels_map: | |
cls_sample_cnt[cls] = 0 | |
return class_labels_map, cls_sample_cnt | |
def load_annotations(ann_file, num_class, num_samples_per_cls): | |
dataset = [] | |
class_to_idx, cls_sample_cnt = get_class_labels(num_class) | |
with open(ann_file, 'r') as fin: | |
for line in fin: | |
line_split = line.strip().split('\t') | |
sample = {} | |
idx = 0 | |
# idx for frame_dir | |
frame_dir = line_split[idx] | |
sample['video'] = frame_dir | |
idx += 1 | |
# idx for label[s] | |
label = [x for x in line_split[idx:]] | |
assert label, f'missing label in line: {line}' | |
assert len(label) == 1 | |
class_name = label[0] | |
class_index = int(class_to_idx[class_name]) | |
# choose a class subset of whole dataset | |
if class_index < num_class: | |
sample['label'] = class_index | |
if cls_sample_cnt[class_name] < num_samples_per_cls: | |
dataset.append(sample) | |
cls_sample_cnt[class_name]+=1 | |
return dataset | |
def find_classes(directory: str) -> Tuple[List[str], Dict[str, int]]: | |
"""Finds the class folders in a dataset. | |
See :class:`DatasetFolder` for details. | |
""" | |
classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir()) | |
if not classes: | |
raise FileNotFoundError(f"Couldn't find any class folder in {directory}.") | |
class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)} | |
return classes, class_to_idx | |
class DecordInit(object): | |
"""Using Decord(https://github.com/dmlc/decord) to initialize the video_reader.""" | |
def __init__(self, num_threads=1): | |
self.num_threads = num_threads | |
self.ctx = decord.cpu(0) | |
def __call__(self, filename): | |
"""Perform the Decord initialization. | |
Args: | |
results (dict): The resulting dict to be modified and passed | |
to the next transform in pipeline. | |
""" | |
reader = decord.VideoReader(filename, | |
ctx=self.ctx, | |
num_threads=self.num_threads) | |
return reader | |
def __repr__(self): | |
repr_str = (f'{self.__class__.__name__}(' | |
f'sr={self.sr},' | |
f'num_threads={self.num_threads})') | |
return repr_str | |
class UCF101(torch.utils.data.Dataset): | |
"""Load the UCF101 video files | |
Args: | |
target_video_len (int): the number of video frames will be load. | |
align_transform (callable): Align different videos in a specified size. | |
temporal_sample (callable): Sample the target length of a video. | |
""" | |
def __init__(self, | |
configs, | |
transform=None, | |
temporal_sample=None): | |
self.configs = configs | |
self.data_path = configs.data_path | |
self.video_lists = get_filelist(configs.data_path) | |
self.transform = transform | |
self.temporal_sample = temporal_sample | |
self.target_video_len = self.configs.num_frames | |
self.v_decoder = DecordInit() | |
self.classes, self.class_to_idx = find_classes(self.data_path) | |
# print(self.class_to_idx) | |
# exit() | |
def __getitem__(self, index): | |
path = self.video_lists[index] | |
class_name = path.split('/')[-2] | |
class_index = self.class_to_idx[class_name] | |
vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit='sec', output_format='TCHW') | |
total_frames = len(vframes) | |
# Sampling video frames | |
start_frame_ind, end_frame_ind = self.temporal_sample(total_frames) | |
assert end_frame_ind - start_frame_ind >= self.target_video_len | |
frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, self.target_video_len, dtype=int) | |
# print(frame_indice) | |
video = vframes[frame_indice] # | |
video = self.transform(video) # T C H W | |
return {'video': video, 'video_name': class_index} | |
def __len__(self): | |
return len(self.video_lists) | |
if __name__ == '__main__': | |
import argparse | |
import video_transforms | |
import torch.utils.data as Data | |
import torchvision.transforms as transforms | |
from PIL import Image | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--num_frames", type=int, default=16) | |
parser.add_argument("--frame_interval", type=int, default=1) | |
# parser.add_argument("--data-path", type=str, default="/nvme/share_data/datasets/UCF101/videos") | |
parser.add_argument("--data-path", type=str, default="/path/to/datasets/UCF101/videos/") | |
config = parser.parse_args() | |
temporal_sample = video_transforms.TemporalRandomCrop(config.num_frames * config.frame_interval) | |
transform_ucf101 = transforms.Compose([ | |
video_transforms.ToTensorVideo(), # TCHW | |
video_transforms.RandomHorizontalFlipVideo(), | |
video_transforms.UCFCenterCropVideo(256), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) | |
]) | |
ffs_dataset = UCF101(config, transform=transform_ucf101, temporal_sample=temporal_sample) | |
ffs_dataloader = Data.DataLoader(dataset=ffs_dataset, batch_size=6, shuffle=False, num_workers=1) | |
# for i, video_data in enumerate(ffs_dataloader): | |
for video_data in ffs_dataloader: | |
print(type(video_data)) | |
video = video_data['video'] | |
video_name = video_data['video_name'] | |
print(video.shape) | |
print(video_name) | |
# print(video_data[2]) | |
# for i in range(16): | |
# img0 = rearrange(video_data[0][0][i], 'c h w -> h w c') | |
# print('Label: {}'.format(video_data[1])) | |
# print(img0.shape) | |
# img0 = Image.fromarray(np.uint8(img0 * 255)) | |
# img0.save('./img{}.jpg'.format(i)) | |
exit() |