HYDRAS_Latte-1 / datasets /taichi_datasets.py
maxin-cn's picture
Upload folder using huggingface_hub
94bafa8 verified
raw
history blame
4.29 kB
import os
import torch
import random
import torch.utils.data as data
import numpy as np
import io
import json
from PIL import Image
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG']
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
class Taichi(data.Dataset):
def __init__(self, configs, transform, temporal_sample=None, train=True):
self.configs = configs
self.data_path = configs.data_path
self.transform = transform
self.temporal_sample = temporal_sample
self.target_video_len = self.configs.num_frames
self.frame_interval = self.configs.frame_interval
self.data_all = self.load_video_frames(self.data_path)
self.video_num = len(self.data_all)
def __getitem__(self, index):
vframes = self.data_all[index]
total_frames = len(vframes)
# Sampling video frames
start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
assert end_frame_ind - start_frame_ind >= self.target_video_len
frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, self.target_video_len, dtype=int)
select_video_frames = vframes[frame_indice[0]: frame_indice[-1]+1: self.frame_interval]
video_frames = []
for path in select_video_frames:
image = Image.open(path).convert('RGB')
video_frame = torch.as_tensor(np.array(image, dtype=np.uint8, copy=True)).unsqueeze(0)
video_frames.append(video_frame)
video_clip = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2)
video_clip = self.transform(video_clip)
# return video_clip, 1
return {'video': video_clip, 'video_name': 1}
def __len__(self):
return self.video_num
def load_video_frames(self, dataroot):
data_all = []
frame_list = os.walk(dataroot)
for _, meta in enumerate(frame_list):
root = meta[0]
try:
frames = sorted(meta[2], key=lambda item: int(item.split('.')[0].split('_')[-1]))
except:
print(meta[0], meta[2])
frames = [os.path.join(root, item) for item in frames if is_image_file(item)]
# if len(frames) > max(0, self.sequence_length * self.sample_every_n_frames):
if len(frames) != 0:
data_all.append(frames)
# self.video_num = len(data_all)
return data_all
if __name__ == '__main__':
import argparse
import torchvision
import video_transforms
import torch.utils.data as data
from torchvision import transforms
from torchvision.utils import save_image
parser = argparse.ArgumentParser()
parser.add_argument("--num_frames", type=int, default=16)
parser.add_argument("--frame_interval", type=int, default=4)
parser.add_argument("--load_fron_ceph", type=bool, default=True)
parser.add_argument("--data-path", type=str, default="/path/to/datasets/taichi/taichi-256/frames/train")
config = parser.parse_args()
target_video_len = config.num_frames
temporal_sample = video_transforms.TemporalRandomCrop(target_video_len * config.frame_interval)
trans = transforms.Compose([
video_transforms.ToTensorVideo(),
video_transforms.RandomHorizontalFlipVideo(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
taichi_dataset = Taichi(config, transform=trans, temporal_sample=temporal_sample)
taichi_dataloader = data.DataLoader(dataset=taichi_dataset, batch_size=1, shuffle=False, num_workers=1)
for i, video_data in enumerate(taichi_dataloader):
print(video_data['video'].shape)
# print(video_data.dtype)
# for i in range(target_video_len):
# save_image(video_data[0][i], os.path.join('./test_data', '%04d.png' % i), normalize=True, value_range=(-1, 1))
# video_ = ((video_data[0] * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
# torchvision.io.write_video('./test_data' + 'test.mp4', video_, fps=8)
# exit()