HYDRAS_Latte-1 / datasets /sky_image_datasets.py
maxin-cn's picture
Upload folder using huggingface_hub
94bafa8 verified
raw
history blame
5.46 kB
import os
import torch
import random
import torch.utils.data as data
import numpy as np
import copy
from PIL import Image
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG']
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
class SkyImages(data.Dataset):
def __init__(self, configs, transform, temporal_sample=None, train=True):
self.configs = configs
self.data_path = configs.data_path
self.transform = transform
self.temporal_sample = temporal_sample
self.target_video_len = self.configs.num_frames
self.frame_interval = self.configs.frame_interval
self.data_all, self.video_frame_all = self.load_video_frames(self.data_path)
# sky video frames
random.shuffle(self.video_frame_all)
self.use_image_num = configs.use_image_num
def __getitem__(self, index):
video_index = index % self.video_num
vframes = self.data_all[video_index]
total_frames = len(vframes)
# Sampling video frames
start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
assert end_frame_ind - start_frame_ind >= self.target_video_len
frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, num=self.target_video_len, dtype=int) # start, stop, num=50
select_video_frames = vframes[frame_indice[0]: frame_indice[-1]+1: self.frame_interval]
video_frames = []
for path in select_video_frames:
video_frame = torch.as_tensor(np.array(Image.open(path), dtype=np.uint8, copy=True)).unsqueeze(0)
video_frames.append(video_frame)
video_clip = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2)
video_clip = self.transform(video_clip)
# get video frames
images = []
for i in range(self.use_image_num):
while True:
try:
video_frame_path = self.video_frame_all[index+i]
image = torch.as_tensor(np.array(Image.open(video_frame_path), dtype=np.uint8, copy=True)).unsqueeze(0)
images.append(image)
break
except Exception as e:
index = random.randint(0, self.video_frame_num - self.use_image_num)
images = torch.cat(images, dim=0).permute(0, 3, 1, 2)
images = self.transform(images)
assert len(images) == self.use_image_num
video_cat = torch.cat([video_clip, images], dim=0)
return {'video': video_cat, 'video_name': 1}
def __len__(self):
return self.video_frame_num
def load_video_frames(self, dataroot):
data_all = []
frames_all = []
frame_list = os.walk(dataroot)
for _, meta in enumerate(frame_list):
root = meta[0]
try:
frames = sorted(meta[2], key=lambda item: int(item.split('.')[0].split('_')[-1]))
except:
print(meta[0]) # root
print(meta[2]) # files
frames = [os.path.join(root, item) for item in frames if is_image_file(item)]
if len(frames) > max(0, self.target_video_len * self.frame_interval): # need all > (16 * frame-interval) videos
# if len(frames) >= max(0, self.target_video_len): # need all > 16 frames videos
data_all.append(frames)
for frame in frames:
frames_all.append(frame)
self.video_num = len(data_all)
self.video_frame_num = len(frames_all)
return data_all, frames_all
if __name__ == '__main__':
import argparse
import torchvision
import video_transforms
import torch.utils.data as data
from torchvision import transforms
from torchvision.utils import save_image
parser = argparse.ArgumentParser()
parser.add_argument("--num_frames", type=int, default=16)
parser.add_argument("--frame_interval", type=int, default=3)
parser.add_argument("--data-path", type=str, default="/path/to/datasets/sky_timelapse/sky_train/")
parser.add_argument("--use-image-num", type=int, default=5)
config = parser.parse_args()
target_video_len = config.num_frames
temporal_sample = video_transforms.TemporalRandomCrop(target_video_len * config.frame_interval)
trans = transforms.Compose([
video_transforms.ToTensorVideo(),
# video_transforms.CenterCropVideo(256),
video_transforms.CenterCropResizeVideo(256),
# video_transforms.RandomHorizontalFlipVideo(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
taichi_dataset = SkyImages(config, transform=trans, temporal_sample=temporal_sample)
print(len(taichi_dataset))
taichi_dataloader = data.DataLoader(dataset=taichi_dataset, batch_size=1, shuffle=False, num_workers=1)
for i, video_data in enumerate(taichi_dataloader):
print(video_data['video'].shape)
# print(video_data.dtype)
# for i in range(target_video_len):
# save_image(video_data[0][i], os.path.join('./test_data', '%04d.png' % i), normalize=True, value_range=(-1, 1))
# video_ = ((video_data[0] * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
# torchvision.io.write_video('./test_data' + 'test.mp4', video_, fps=8)
# exit()