HYDRAS_Latte-1 / datasets /ffs_image_datasets.py
maxin-cn's picture
Upload folder using huggingface_hub
94bafa8 verified
raw
history blame
9.03 kB
import os
import json
import torch
import decord
import torchvision
import numpy as np
import random
from PIL import Image
from einops import rearrange
from typing import Dict, List, Tuple
from torchvision import transforms
import traceback
class_labels_map = None
cls_sample_cnt = None
def temporal_sampling(frames, start_idx, end_idx, num_samples):
"""
Given the start and end frame index, sample num_samples frames between
the start and end with equal interval.
Args:
frames (tensor): a tensor of video frames, dimension is
`num video frames` x `channel` x `height` x `width`.
start_idx (int): the index of the start frame.
end_idx (int): the index of the end frame.
num_samples (int): number of frames to sample.
Returns:
frames (tersor): a tensor of temporal sampled video frames, dimension is
`num clip frames` x `channel` x `height` x `width`.
"""
index = torch.linspace(start_idx, end_idx, num_samples)
index = torch.clamp(index, 0, frames.shape[0] - 1).long()
frames = torch.index_select(frames, 0, index)
return frames
def numpy2tensor(x):
return torch.from_numpy(x)
def get_filelist(file_path):
Filelist = []
for home, dirs, files in os.walk(file_path):
for filename in files:
# 文件名列表,包含完整路径
Filelist.append(os.path.join(home, filename))
# # 文件名列表,只包含文件名
# Filelist.append( filename)
return Filelist
def load_annotation_data(data_file_path):
with open(data_file_path, 'r') as data_file:
return json.load(data_file)
def get_class_labels(num_class, anno_pth='./k400_classmap.json'):
global class_labels_map, cls_sample_cnt
if class_labels_map is not None:
return class_labels_map, cls_sample_cnt
else:
cls_sample_cnt = {}
class_labels_map = load_annotation_data(anno_pth)
for cls in class_labels_map:
cls_sample_cnt[cls] = 0
return class_labels_map, cls_sample_cnt
def load_annotations(ann_file, num_class, num_samples_per_cls):
dataset = []
class_to_idx, cls_sample_cnt = get_class_labels(num_class)
with open(ann_file, 'r') as fin:
for line in fin:
line_split = line.strip().split('\t')
sample = {}
idx = 0
# idx for frame_dir
frame_dir = line_split[idx]
sample['video'] = frame_dir
idx += 1
# idx for label[s]
label = [x for x in line_split[idx:]]
assert label, f'missing label in line: {line}'
assert len(label) == 1
class_name = label[0]
class_index = int(class_to_idx[class_name])
# choose a class subset of whole dataset
if class_index < num_class:
sample['label'] = class_index
if cls_sample_cnt[class_name] < num_samples_per_cls:
dataset.append(sample)
cls_sample_cnt[class_name]+=1
return dataset
class DecordInit(object):
"""Using Decord(https://github.com/dmlc/decord) to initialize the video_reader."""
def __init__(self, num_threads=1, **kwargs):
self.num_threads = num_threads
self.ctx = decord.cpu(0)
self.kwargs = kwargs
def __call__(self, filename):
"""Perform the Decord initialization.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
reader = decord.VideoReader(filename,
ctx=self.ctx,
num_threads=self.num_threads)
return reader
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'sr={self.sr},'
f'num_threads={self.num_threads})')
return repr_str
class FaceForensicsImages(torch.utils.data.Dataset):
"""Load the FaceForensics video files
Args:
target_video_len (int): the number of video frames will be load.
align_transform (callable): Align different videos in a specified size.
temporal_sample (callable): Sample the target length of a video.
"""
def __init__(self,
configs,
transform=None,
temporal_sample=None):
self.configs = configs
self.data_path = configs.data_path
self.video_lists = get_filelist(configs.data_path)
self.transform = transform
self.temporal_sample = temporal_sample
self.target_video_len = self.configs.num_frames
self.v_decoder = DecordInit()
self.video_length = len(self.video_lists)
# ffs video frames
self.video_frame_path = configs.frame_data_path
self.video_frame_txt = configs.frame_data_txt
self.video_frame_files = [frame_file.strip() for frame_file in open(self.video_frame_txt)]
random.shuffle(self.video_frame_files)
self.use_image_num = configs.use_image_num
self.image_tranform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
def __getitem__(self, index):
video_index = index % self.video_length
path = self.video_lists[video_index]
vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit='sec', output_format='TCHW')
total_frames = len(vframes)
# Sampling video frames
start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
assert end_frame_ind - start_frame_ind >= self.target_video_len
frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, self.target_video_len, dtype=int)
video = vframes[frame_indice]
# videotransformer data proprecess
video = self.transform(video) # T C H W
# get video frames
images = []
for i in range(self.use_image_num):
while True:
try:
image = Image.open(os.path.join(self.video_frame_path, self.video_frame_files[index+i])).convert("RGB")
image = self.image_tranform(image).unsqueeze(0)
images.append(image)
break
except Exception as e:
traceback.print_exc()
index = random.randint(0, len(self.video_frame_files) - self.use_image_num)
images = torch.cat(images, dim=0)
assert len(images) == self.use_image_num
video_cat = torch.cat([video, images], dim=0)
return {'video': video_cat, 'video_name': 1}
def __len__(self):
return len(self.video_frame_files)
if __name__ == '__main__':
import argparse
import torchvision
import video_transforms
import torch.utils.data as Data
import torchvision.transforms as transform
from PIL import Image
parser = argparse.ArgumentParser()
parser.add_argument("--num_frames", type=int, default=16)
parser.add_argument("--use-image-num", type=int, default=5)
parser.add_argument("--frame_interval", type=int, default=3)
parser.add_argument("--dataset", type=str, default='webvideo10m')
parser.add_argument("--test-run", type=bool, default='')
parser.add_argument("--data-path", type=str, default="/path/to/datasets/preprocessed_ffs/train/videos/")
parser.add_argument("--frame-data-path", type=str, default="/path/to/datasets/preprocessed_ffs/train/images/")
parser.add_argument("--frame-data-txt", type=str, default="/path/to/datasets/faceForensics_v1/train_list.txt")
config = parser.parse_args()
temporal_sample = video_transforms.TemporalRandomCrop(config.num_frames * config.frame_interval)
transform_webvideo = transform.Compose([
video_transforms.ToTensorVideo(),
transform.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
])
dataset = FaceForensicsImages(config, transform=transform_webvideo, temporal_sample=temporal_sample)
dataloader = Data.DataLoader(dataset=dataset, batch_size=1, shuffle=True, num_workers=4)
for i, video_data in enumerate(dataloader):
video, video_label = video_data['video'], video_data['video_name']
# print(video_label)
# print(image_label)
print(video.shape)
print(video_label)
# video_ = ((video[0] * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
# print(video_.shape)
# try:
# torchvision.io.write_video(f'./test/{i:03d}_{video_label}.mp4', video_[:16], fps=8)
# except:
# pass
# if i % 100 == 0 and i != 0:
# break
print('Done!')