Spaces:
Running
Running
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
"""Inception Score (IS) from the paper "Improved techniques for training | |
GANs". Matches the original implementation by Salimans et al. at | |
https://github.com/openai/improved-gan/blob/master/inception_score/model.py""" | |
import numpy as np | |
from . import metric_utils | |
#---------------------------------------------------------------------------- | |
def compute_is(opts, num_gen, num_splits): | |
# Direct TorchScript translation of http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz | |
detector_url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/inception-2015-12-05.pt' | |
detector_kwargs = dict(no_output_bias=True) # Match the original implementation by not applying bias in the softmax layer. | |
if opts.generator_as_dataset: | |
compute_gen_stats_fn = metric_utils.compute_feature_stats_for_dataset | |
gen_opts = metric_utils.rewrite_opts_for_gen_dataset(opts) | |
gen_kwargs = dict(use_image_dataset=True) | |
else: | |
compute_gen_stats_fn = metric_utils.compute_feature_stats_for_generator | |
gen_opts = opts | |
gen_kwargs = dict() | |
gen_probs = compute_gen_stats_fn( | |
opts=gen_opts, detector_url=detector_url, detector_kwargs=detector_kwargs, | |
capture_all=True, max_items=num_gen, **gen_kwargs).get_all() | |
if opts.rank != 0: | |
return float('nan'), float('nan') | |
scores = [] | |
for i in range(num_splits): | |
part = gen_probs[i * num_gen // num_splits : (i + 1) * num_gen // num_splits] | |
kl = part * (np.log(part) - np.log(np.mean(part, axis=0, keepdims=True))) | |
kl = np.mean(np.sum(kl, axis=1)) | |
print(kl) | |
scores.append(np.exp(kl)) | |
return float(np.mean(scores)), float(np.std(scores)) | |
#---------------------------------------------------------------------------- | |