Spaces:
Running
Running
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
Samples a large number of images from a pre-trained Latte model using DDP. | |
Subsequently saves a .npz file that can be used to compute FVD and other | |
evaluation metrics via the ADM repo: https://github.com/openai/guided-diffusion/tree/main/evaluations | |
For a simple single-GPU/CPU sampling script, see sample.py. | |
""" | |
import io | |
import os | |
import sys | |
import torch | |
sys.path.append(os.path.split(sys.path[0])[0]) | |
import torch.distributed as dist | |
from utils import find_model | |
from diffusion import create_diffusion | |
from diffusers.models import AutoencoderKL | |
from tqdm import tqdm | |
import os | |
from PIL import Image | |
import numpy as np | |
import math | |
import argparse | |
import imageio | |
from omegaconf import OmegaConf | |
from models import get_models | |
from einops import rearrange | |
def create_npz_from_sample_folder(sample_dir, num=50_000): | |
""" | |
Builds a single .npz file from a folder of .png samples. | |
""" | |
samples = [] | |
for i in tqdm(range(num), desc="Building .npz file from samples"): | |
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png") | |
sample_np = np.asarray(sample_pil).astype(np.uint8) | |
samples.append(sample_np) | |
samples = np.stack(samples) | |
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3) | |
npz_path = f"{sample_dir}.npz" | |
np.savez(npz_path, arr_0=samples) | |
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].") | |
return npz_path | |
def main(args): | |
""" | |
Run sampling. | |
""" | |
torch.backends.cuda.matmul.allow_tf32 = True # True: fast but may lead to some small numerical differences | |
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage" | |
torch.set_grad_enabled(False) | |
# Setup DDP: | |
dist.init_process_group("nccl") | |
rank = dist.get_rank() | |
device = rank % torch.cuda.device_count() | |
if args.seed: | |
seed = args.seed * dist.get_world_size() + rank | |
torch.manual_seed(seed) | |
torch.cuda.set_device(device) | |
# print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.") | |
if args.ckpt is None: | |
assert args.model == "Latte-XL/2", "Only Latte-XL/2 models are available for auto-download." | |
assert args.image_size in [256, 512] | |
assert args.num_classes == 1000 | |
# Load model: | |
latent_size = args.image_size // 8 | |
args.latent_size = latent_size | |
model = get_models(args).to(device) | |
if args.use_compile: | |
model = torch.compile(model) | |
# a pre-trained model or load a custom Latte checkpoint from train.py: | |
ckpt_path = args.ckpt | |
state_dict = find_model(ckpt_path) | |
model.load_state_dict(state_dict) | |
model.eval() # important! | |
diffusion = create_diffusion(str(args.num_sampling_steps)) | |
# vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}").to(device) | |
# vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae").to(device) | |
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="sd-vae-ft-ema").to(device) | |
if args.use_fp16: | |
print('WARNING: using half percision for inferencing!') | |
vae.to(dtype=torch.float16) | |
model.to(dtype=torch.float16) | |
# text_encoder.to(dtype=torch.float16) | |
assert args.cfg_scale >= 1.0, "In almost all cases, cfg_scale be >= 1.0" | |
using_cfg = args.cfg_scale > 1.0 | |
# Create folder to save samples: | |
# model_string_name = args.model.replace("/", "-") | |
# ckpt_string_name = os.path.basename(args.ckpt).replace(".pt", "") if args.ckpt else "pretrained" | |
# folder_name = f"{model_string_name}-{ckpt_string_name}-size-{args.image_size}-vae-{args.vae}-" \ | |
# f"cfg-{args.cfg_scale}-seed-{args.seed}" | |
# sample_folder_dir = f"{args.sample_dir}/{folder_name}" | |
sample_folder_dir = args.save_video_path | |
if args.seed: | |
sample_folder_dir = args.save_video_path + '-seed-' + str(args.seed) | |
if rank == 0: | |
os.makedirs(sample_folder_dir, exist_ok=True) | |
print(f"Saving .mp4 samples at {sample_folder_dir}") | |
dist.barrier() | |
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run: | |
n = args.per_proc_batch_size | |
global_batch_size = n * dist.get_world_size() | |
# To make things evenly-divisible, we'll sample a bit more than we need and then discard the extra samples: | |
total_samples = int(math.ceil(args.num_fvd_samples / global_batch_size) * global_batch_size) | |
if rank == 0: | |
print(f"Total number of images that will be sampled: {total_samples}") | |
assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size" | |
samples_needed_this_gpu = int(total_samples // dist.get_world_size()) | |
assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size" | |
iterations = int(samples_needed_this_gpu // n) | |
pbar = range(iterations) | |
pbar = tqdm(pbar) if rank == 0 else pbar | |
total = 0 | |
for _ in pbar: | |
# Sample inputs: | |
if args.use_fp16: | |
z = torch.randn(n, args.num_frames, 4, latent_size, latent_size, dtype=torch.float16, device=device) | |
else: | |
z = torch.randn(n, args.num_frames, 4, latent_size, latent_size, device=device) | |
# Setup classifier-free guidance: | |
if using_cfg: | |
z = torch.cat([z, z], 0) | |
y = torch.randint(0, args.num_classes, (n,), device=device) | |
y_null = torch.tensor([101] * n, device=device) | |
y = torch.cat([y, y_null], dim=0) | |
model_kwargs = dict(y=y, cfg_scale=args.cfg_scale, use_fp16=args.use_fp16) | |
sample_fn = model.forward_with_cfg | |
else: | |
model_kwargs = dict(y=None, use_fp16=args.use_fp16) | |
sample_fn = model.forward | |
# Sample images: | |
if args.sample_method == 'ddim': | |
samples = diffusion.ddim_sample_loop( | |
sample_fn, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=False, device=device | |
) | |
elif args.sample_method == 'ddpm': | |
samples = diffusion.p_sample_loop( | |
sample_fn, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=False, device=device | |
) | |
if using_cfg: | |
samples, _ = samples.chunk(2, dim=0) # Remove null class samples | |
if args.use_fp16: | |
samples = samples.to(dtype=torch.float16) | |
b, f, c, h, w = samples.shape | |
samples = rearrange(samples, 'b f c h w -> (b f) c h w') | |
samples = vae.decode(samples / 0.18215).sample | |
samples = rearrange(samples, '(b f) c h w -> b f c h w', b=b) | |
# Save samples to disk as individual .png files | |
for i, sample in enumerate(samples): | |
sample = ((sample * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1).contiguous() | |
index = i * dist.get_world_size() + rank + total | |
# Image.fromarray(sample).save(f"{sample_folder_dir}/{index:04d}.png") | |
sample_save_path = f"{sample_folder_dir}/{index:04d}.mp4" | |
imageio.mimwrite(sample_save_path, sample, fps=8, quality=9) | |
total += global_batch_size | |
# Make sure all processes have finished saving their samples before attempting to convert to .npz | |
dist.barrier() | |
# if rank == 0: | |
# create_npz_from_sample_folder(sample_folder_dir, args.num_fvd_samples) | |
# print("Done.") | |
# dist.barrier() | |
dist.destroy_process_group() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml") | |
parser.add_argument("--ckpt", type=str, default="") | |
parser.add_argument("--save_video_path", type=str, default="./sample_videos/") | |
parser.add_argument("--save_ceph", default=False, action='store_true') | |
args = parser.parse_args() | |
omega_conf = OmegaConf.load(args.config) | |
omega_conf.ckpt = args.ckpt | |
omega_conf.save_video_path = args.save_video_path | |
omega_conf.save_ceph = args.save_ceph | |
main(omega_conf) |