Spaces:
Running
Running
import os | |
import sys | |
sys.path.append(os.path.split(sys.path[0])[0]) | |
from .latte import Latte_models | |
from .latte_img import LatteIMG_models | |
from .latte_t2v import LatteT2V | |
from torch.optim.lr_scheduler import LambdaLR | |
def customized_lr_scheduler(optimizer, warmup_steps=5000): # 5000 from u-vit | |
from torch.optim.lr_scheduler import LambdaLR | |
def fn(step): | |
if warmup_steps > 0: | |
return min(step / warmup_steps, 1) | |
else: | |
return 1 | |
return LambdaLR(optimizer, fn) | |
def get_lr_scheduler(optimizer, name, **kwargs): | |
if name == 'warmup': | |
return customized_lr_scheduler(optimizer, **kwargs) | |
elif name == 'cosine': | |
from torch.optim.lr_scheduler import CosineAnnealingLR | |
return CosineAnnealingLR(optimizer, **kwargs) | |
else: | |
raise NotImplementedError(name) | |
def get_models(args): | |
if 'LatteIMG' in args.model: | |
return LatteIMG_models[args.model]( | |
input_size=args.latent_size, | |
num_classes=args.num_classes, | |
num_frames=args.num_frames, | |
learn_sigma=args.learn_sigma, | |
extras=args.extras | |
) | |
elif 'LatteT2V' in args.model: | |
return LatteT2V.from_pretrained(args.pretrained_model_path, subfolder="transformer", video_length=args.video_length) | |
elif 'Latte' in args.model: | |
return Latte_models[args.model]( | |
input_size=args.latent_size, | |
num_classes=args.num_classes, | |
num_frames=args.num_frames, | |
learn_sigma=args.learn_sigma, | |
extras=args.extras | |
) | |
else: | |
raise '{} Model Not Supported!'.format(args.model) | |