Spaces:
Running
Running
from .sky_datasets import Sky | |
from torchvision import transforms | |
from .taichi_datasets import Taichi | |
from datasets import video_transforms | |
from .ucf101_datasets import UCF101 | |
from .ffs_datasets import FaceForensics | |
from .ffs_image_datasets import FaceForensicsImages | |
from .sky_image_datasets import SkyImages | |
from .ucf101_image_datasets import UCF101Images | |
from .taichi_image_datasets import TaichiImages | |
def get_dataset(args): | |
temporal_sample = video_transforms.TemporalRandomCrop(args.num_frames * args.frame_interval) # 16 1 | |
if args.dataset == 'ffs': | |
transform_ffs = transforms.Compose([ | |
video_transforms.ToTensorVideo(), # TCHW | |
video_transforms.RandomHorizontalFlipVideo(), | |
video_transforms.UCFCenterCropVideo(args.image_size), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) | |
]) | |
return FaceForensics(args, transform=transform_ffs, temporal_sample=temporal_sample) | |
elif args.dataset == 'ffs_img': | |
transform_ffs = transforms.Compose([ | |
video_transforms.ToTensorVideo(), # TCHW | |
video_transforms.RandomHorizontalFlipVideo(), | |
video_transforms.UCFCenterCropVideo(args.image_size), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) | |
]) | |
return FaceForensicsImages(args, transform=transform_ffs, temporal_sample=temporal_sample) | |
elif args.dataset == 'ucf101': | |
transform_ucf101 = transforms.Compose([ | |
video_transforms.ToTensorVideo(), # TCHW | |
video_transforms.RandomHorizontalFlipVideo(), | |
video_transforms.UCFCenterCropVideo(args.image_size), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) | |
]) | |
return UCF101(args, transform=transform_ucf101, temporal_sample=temporal_sample) | |
elif args.dataset == 'ucf101_img': | |
transform_ucf101 = transforms.Compose([ | |
video_transforms.ToTensorVideo(), # TCHW | |
video_transforms.RandomHorizontalFlipVideo(), | |
video_transforms.UCFCenterCropVideo(args.image_size), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) | |
]) | |
return UCF101Images(args, transform=transform_ucf101, temporal_sample=temporal_sample) | |
elif args.dataset == 'taichi': | |
transform_taichi = transforms.Compose([ | |
video_transforms.ToTensorVideo(), # TCHW | |
video_transforms.RandomHorizontalFlipVideo(), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) | |
]) | |
return Taichi(args, transform=transform_taichi, temporal_sample=temporal_sample) | |
elif args.dataset == 'taichi_img': | |
transform_taichi = transforms.Compose([ | |
video_transforms.ToTensorVideo(), # TCHW | |
video_transforms.RandomHorizontalFlipVideo(), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) | |
]) | |
return TaichiImages(args, transform=transform_taichi, temporal_sample=temporal_sample) | |
elif args.dataset == 'sky': | |
transform_sky = transforms.Compose([ | |
video_transforms.ToTensorVideo(), | |
video_transforms.CenterCropResizeVideo(args.image_size), | |
# video_transforms.RandomHorizontalFlipVideo(), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) | |
]) | |
return Sky(args, transform=transform_sky, temporal_sample=temporal_sample) | |
elif args.dataset == 'sky_img': | |
transform_sky = transforms.Compose([ | |
video_transforms.ToTensorVideo(), | |
video_transforms.CenterCropResizeVideo(args.image_size), | |
# video_transforms.RandomHorizontalFlipVideo(), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) | |
]) | |
return SkyImages(args, transform=transform_sky, temporal_sample=temporal_sample) | |
else: | |
raise NotImplementedError(args.dataset) |