Spaces:
Sleeping
Sleeping
import dataclasses | |
from enum import auto, Enum | |
from typing import List, Tuple | |
import os | |
class SeparatorStyle(Enum): | |
"""Different separator style.""" | |
SINGLE = auto() | |
TWO = auto() | |
MPT = auto() | |
PLAIN = auto() | |
LLAMA_2 = auto() | |
MISTRAL = auto() | |
# video_helper_map = { | |
# # 'Chips Making Deal Video' : {'path' : '/data/videos/ChipmakingDeal/sub-videos/', 'prefix' : 'ChipmakingDeal_split'}, | |
# 'Keynote 2023' : {'path' : '/data/videos/PatsKeynote23/sub-videos/', 'prefix' : 'keynotes23_split'}, | |
# 'Intel Behind the Bell' : {'path' : '/data/videos/BehindTheBell/sub-videos/', 'prefix' : 'Behind the Bell Intel_split'}, | |
# 'CEOs Talk' : {'path' : '/data/videos/SamPatTalkAI/sub-videos/', 'prefix' : 'Sam Altman and Pat Gelsinger Talk Artificial Intelligence_split'}, | |
# 'Chips Act Funding Announcement' : {'path' : '/data/videos/IntelChipsFundingAnnounce/sub-videos/', 'prefix' : 'Intel Celebrates CHIPS and Science Act Direct Funding Announcement (Replay)_split'}, | |
# '22nm-Chip Technology' : {'path' : '/data/videos/MarkBohrExplains22nm/sub-videos/', 'prefix' : 'Video Animation Mark Bohr Gets Small 22nm Explained Intel_split'}, | |
# '14nm-Chip Technology' : {'path' : '/data/videos/MarkBohrExplains14nm/sub-videos/', 'prefix' : 'Explanation of Intels 14nm Process_split'}, | |
# } | |
video_helper_map = { | |
# 'Chips Making Deal Video' : {'path' : '/data/videos/ChipmakingDeal/sub-videos/', 'prefix' : 'ChipmakingDeal_split'}, | |
'Innovation-2023' : {'path' : '/data1/tile_gh/Multimodal-RAG/videos/PatsKeynote23/sub-videos/', 'prefix' : 'keynotes23_split'}, | |
'Behind-the-Bell-Intel' : {'path' : '/data1/tile_gh/Multimodal-RAG/videos/BehindTheBell/sub-videos/', 'prefix' : 'Behind the Bell Intel_split'}, | |
'Foundry-Connect' : {'path' : '/data1/tile_gh/Multimodal-RAG/videos/SamPatTalkAI/sub-videos/', 'prefix' : 'Sam Altman and Pat Gelsinger Talk Artificial Intelligence_split'}, | |
'Chips Act Funding Announcement' : {'path' : '/data1/tile_gh/Multimodal-RAG/videos/IntelChipsFundingAnnounce/sub-videos/', 'prefix' : 'Intel Celebrates CHIPS and Science Act Direct Funding Announcement (Replay)_split'}, | |
'22nm-transistor-animation' : {'path' : '/data1/tile_gh/Multimodal-RAG/videos/MarkBohrExplains22nm/sub-videos/', 'prefix' : 'Video Animation Mark Bohr Gets Small 22nm Explained Intel_split'}, | |
'14nm-transistor-animation' : {'path' : '/data1/tile_gh/Multimodal-RAG/videos/MarkBohrExplains14nm/sub-videos/', 'prefix' : 'Explanation of Intels 14nm Process_split'}, | |
} | |
class Conversation: | |
"""A class that keeps all conversation history.""" | |
system: str | |
roles: List[str] | |
messages: List[List[str]] | |
offset: int | |
sep_style: SeparatorStyle = SeparatorStyle.SINGLE | |
sep: str = "\n" | |
sep2: str = None | |
version: str = "Unknown" | |
path_to_img: str = None | |
video_title: str = None | |
caption: str = None | |
skip_next: bool = False | |
def _template_caption(self): | |
out = "" | |
if self.caption is not None: | |
out = f"The caption associated with the image is '{self.caption}'. " | |
return out | |
def get_prompt(self): | |
messages = self.messages | |
if len(messages) > 0 and messages[1][1] is not None and "<image>" not in messages[0][1]: | |
# if there is a history message and <image> is not yet in the first message of user | |
# then add <image>\n to the beginning | |
messages = self.messages.copy() | |
init_role, init_msg = messages[0].copy() | |
messages[0] = (init_role, "<image>\n" + self._template_caption() + init_msg) | |
if len(messages) > 1 and messages[1][1] is None: | |
#Need to do RAG. prompt is the query only | |
ret = messages[0][1] | |
else: | |
if self.sep_style == SeparatorStyle.SINGLE: | |
ret = "" | |
for role, message in messages: | |
if message: | |
ret += role + ": " + message + self.sep | |
else: | |
ret += role + ":" | |
elif self.sep_style == SeparatorStyle.LLAMA_2: | |
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg | |
wrap_inst = lambda msg: f"[INST] {msg} [/INST]" | |
ret = "" | |
for i, (role, message) in enumerate(messages): | |
if i == 0: | |
assert message, "first message should not be none" | |
assert role == self.roles[0], "first message should come from user" | |
if message: | |
if type(message) is tuple: | |
message, _, _ = message | |
if i == 0: message = wrap_sys(self.system) + message | |
if i % 2 == 0: | |
message = wrap_inst(message) | |
ret += self.sep + message | |
else: | |
ret += " " + message + " " + self.sep2 | |
else: | |
ret += "" | |
ret = ret.lstrip(self.sep) | |
else: | |
raise ValueError(f"Invalid style: {self.sep_style}") | |
return ret | |
def append_message(self, role, message): | |
self.messages.append([role, message]) | |
def get_images(self, return_pil=False): | |
images = [] | |
if self.path_to_img is not None: | |
path_to_image = self.path_to_img | |
images.append(path_to_image) | |
# import base64 | |
# from io import BytesIO | |
# from PIL import Image | |
# image = Image.open(path_to_image) | |
# max_hw, min_hw = max(image.size), min(image.size) | |
# aspect_ratio = max_hw / min_hw | |
# max_len, min_len = 800, 400 | |
# shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) | |
# longest_edge = int(shortest_edge * aspect_ratio) | |
# W, H = image.size | |
# if longest_edge != max(image.size): | |
# if H > W: | |
# H, W = longest_edge, shortest_edge | |
# else: | |
# H, W = shortest_edge, longest_edge | |
# image = image.resize((W, H)) | |
# if return_pil: | |
# images.append(image) | |
# else: | |
# # buffered = BytesIO() | |
# # # image.save(buffered, format="PNG") | |
# # img_b64_str = base64.b64encode(buffered.getvalue()).decode() | |
# images.append(path_to_image) | |
return images | |
def to_gradio_chatbot(self): | |
ret = [] | |
for i, (role, msg) in enumerate(self.messages[self.offset:]): | |
if i % 2 == 0: | |
if type(msg) is tuple: | |
import base64 | |
from io import BytesIO | |
msg, image, image_process_mode = msg | |
max_hw, min_hw = max(image.size), min(image.size) | |
aspect_ratio = max_hw / min_hw | |
max_len, min_len = 800, 400 | |
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) | |
longest_edge = int(shortest_edge * aspect_ratio) | |
W, H = image.size | |
if H > W: | |
H, W = longest_edge, shortest_edge | |
else: | |
H, W = shortest_edge, longest_edge | |
image = image.resize((W, H)) | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
img_b64_str = base64.b64encode(buffered.getvalue()).decode() | |
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />' | |
msg = img_str + msg.replace('<image>', '').strip() | |
ret.append([msg, None]) | |
else: | |
ret.append([msg, None]) | |
else: | |
ret[-1][-1] = msg | |
return ret | |
def copy(self): | |
return Conversation( | |
system=self.system, | |
roles=self.roles, | |
messages=[[x, y] for x, y in self.messages], | |
offset=self.offset, | |
sep_style=self.sep_style, | |
sep=self.sep, | |
sep2=self.sep2, | |
version=self.version,) | |
def dict(self): | |
return { | |
"system": self.system, | |
"roles": self.roles, | |
"messages": self.messages, | |
"offset": self.offset, | |
"sep": self.sep, | |
"sep2": self.sep2, | |
"path_to_img": self.path_to_img, | |
"video_title" : self.video_title, | |
"caption" : self.caption, | |
} | |
def get_path_to_subvideos(self): | |
print(f"self.video_title {self.video_title}") | |
print(f"self.path_to_image {self.path_to_img}") | |
return None | |
if self.video_title is not None and self.path_to_img is not None: | |
info = video_helper_map[self.video_title] | |
path = info['path'] | |
prefix = info['prefix'] | |
vid_index = self.path_to_img.split('/')[-1] | |
vid_index = vid_index.split('_')[-1] | |
vid_index = vid_index.replace('.jpg', '') | |
ret = f"{prefix}{vid_index}.mp4" | |
ret = os.path.join(path, ret) | |
return ret | |
elif self.path_to_img is not None: | |
return self.path_to_img | |
return None | |
multimodal_rag = Conversation( | |
system="", | |
roles=("USER", "ASSISTANT"), | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.SINGLE, | |
sep="\n", | |
path_to_img=None, | |
video_title=None, | |
caption=None, | |
) | |
conv_mistral_instruct = Conversation( | |
system="", | |
roles=("USER", "ASSISTANT"), | |
version="llama_v2", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.LLAMA_2, | |
sep="", | |
sep2="</s>", | |
path_to_img=None, | |
video_title=None, | |
caption=None, | |
) | |
default_conversation = multimodal_rag | |
conv_templates = { | |
"default": multimodal_rag, | |
"multimodal_rag" : multimodal_rag, | |
"llavamed_rag" : conv_mistral_instruct, | |
} | |
if __name__ == "__main__": | |
print(default_conversation.get_prompt()) | |