PedroMartelleto's picture
Fix import error
032c7aa
raw
history blame
3.64 kB
import PIL
from captum.attr import GradientShap
from captum.attr import visualization as viz
import torch
from torchvision import transforms
from matplotlib.colors import LinearSegmentedColormap
import torch.nn.functional as F
import gradio as gr
from torchvision.models import resnet50
import torch.nn as nn
import torch
import numpy as np
class Explainer:
def __init__(self, model):
self.model = model
self.default_cmap = LinearSegmentedColormap.from_list('custom blue',
[(0, '#ffffff'),
(0.25, '#000000'),
(1, '#000000')], N=256)
def __init__(self, model, img, class_names):
self.model = model
self.class_names = class_names
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor()
])
transform_normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
self.transformed_img = transform(img)
self.input = transform_normalize(self.transformed_img)
self.input = input.unsqueeze(0)
with torch.no_grad():
self.output = self.model(input)
self.output = F.softmax(self.output, dim=1)
print(self.output.shape)
self.confidences = {class_names[i]: float(self.output[0, i]) for i in range(3)}
self.pred_score, self.pred_label_idx = torch.topk(self.output, 1)
self.pred_label = self.class_names[self.pred_label_idx]
self.fig_title = 'Predicted: ' + self.pred_label + ' (' + str(round(self.pred_score.squeeze().item(), 2)) + ')'
def convert_fig_to_pil(self, fig):
return PIL.Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
def shap(self):
gradient_shap = GradientShap(self.model)
rand_img_dist = torch.cat([self.input * 0, self.input * 1])
attributions_gs = gradient_shap.attribute(self.input, n_samples=50, stdevs=0.0001, baselines=rand_img_dist, target=self.pred_label_idx)
fig, _ = viz.visualize_image_attr_multiple(np.transpose(attributions_gs.squeeze().cpu().detach().numpy(), (1,2,0)),
np.transpose(self.transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),
["original_image", "heat_map"],
["all", "absolute_value"],
cmap=self.default_cmap,
show_colorbar=True)
fig.suptitle(self.fig_title, fontsize=12)
return self.convert_fig_to_pil(fig)
@staticmethod
def create_model_from_checkpoint():
# Loads a model from a checkpoint
model = resnet50()
model.fc = nn.Linear(model.fc.in_features, 3)
model.load_state_dict(torch.load("best_model"))
model.eval()
return model
model = create_model_from_checkpoint()
labels = [ "benign", "malignant", "normal" ]
def predict(img):
explainer = Explainer(model, img, labels)
shap_img = explainer.shap()
return [explainer.confidences, shap_img]
ui = gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=[gr.Label(num_top_classes=3), gr.Image(type="pil")],
examples=["benign (52).png", "benign (243).png", "malignant (127).png", "malignant (201).png", "normal (81).png", "normal (101).png"]).launch()
ui.launch(share=True)