Spaces:
Runtime error
Runtime error
Pedrampedram
commited on
Commit
·
37e6628
1
Parent(s):
8bb4085
Upload 4 files
Browse files- .gitattributes +1 -0
- app.py +18 -0
- dataset.tsv +3 -0
- question_processing.py +91 -0
- requirements.txt +5 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
dataset.tsv filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from question_processing import process_question
|
3 |
+
|
4 |
+
st.title("Question Answering System")
|
5 |
+
st.write("Enter your question and get an answer from the pre-trained model.")
|
6 |
+
|
7 |
+
# Input field for the user's question
|
8 |
+
question = st.text_input("Please enter your question:")
|
9 |
+
|
10 |
+
# Process the question and display the answer(s) when the user clicks the "Submit" button
|
11 |
+
if st.button("Submit"):
|
12 |
+
if question:
|
13 |
+
answers = process_question(question)
|
14 |
+
for answer in answers:
|
15 |
+
st.write("Answer:", answer)
|
16 |
+
st.write("---")
|
17 |
+
else:
|
18 |
+
st.write("Please enter a question.")
|
dataset.tsv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e88b7f47f3494171367face846d1dcaf2710854870b076d6d419b8bae720bf1
|
3 |
+
size 28877451
|
question_processing.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
import os
|
3 |
+
import textwrap
|
4 |
+
import pandas as pd
|
5 |
+
from langchain import HuggingFaceHub
|
6 |
+
from langchain.document_loaders import TextLoader
|
7 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.text_splitter import CharacterTextSplitter
|
9 |
+
from langchain.vectorstores import FAISS
|
10 |
+
from langchain.chains.question_answering import load_qa_chain
|
11 |
+
from transformers import AutoTokenizer
|
12 |
+
|
13 |
+
def wrap_text_preserve_newlines(text, width=110):
|
14 |
+
lines = text.split('\n')
|
15 |
+
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
16 |
+
wrapped_text = '\n'.join(wrapped_lines)
|
17 |
+
return wrapped_text
|
18 |
+
|
19 |
+
def split_into_chunks(text, tokenizer, max_tokens=500):
|
20 |
+
tokens = tokenizer.encode(text, return_tensors="pt").squeeze()
|
21 |
+
token_chunks = []
|
22 |
+
|
23 |
+
current_chunk = []
|
24 |
+
current_chunk_len = 0
|
25 |
+
for token in tokens:
|
26 |
+
token_len = len(tokenizer.decode(token.item()))
|
27 |
+
if current_chunk_len + token_len + 1 > max_tokens:
|
28 |
+
token_chunks.append(tokenizer.decode(current_chunk))
|
29 |
+
current_chunk = []
|
30 |
+
current_chunk_len = 0
|
31 |
+
current_chunk.append(token.item())
|
32 |
+
current_chunk_len += token_len + 1
|
33 |
+
|
34 |
+
if current_chunk:
|
35 |
+
token_chunks.append(tokenizer.decode(current_chunk))
|
36 |
+
|
37 |
+
return token_chunks
|
38 |
+
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xxl")
|
40 |
+
|
41 |
+
class TextDocument:
|
42 |
+
def __init__(self, content, id, metadata=None):
|
43 |
+
self.page_content = content
|
44 |
+
self.metadata = metadata if metadata is not None else {}
|
45 |
+
self.metadata['id'] = id
|
46 |
+
|
47 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"
|
48 |
+
|
49 |
+
data_frame = pd.read_csv("dataset.tsv", sep="\t", nrows=1000)
|
50 |
+
data = data_frame.to_dict(orient="records")
|
51 |
+
documents = [TextDocument(content=str(item["answer"]), id=item["id"]) for item in data]
|
52 |
+
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
53 |
+
docs = text_splitter.split_documents(documents)
|
54 |
+
embeddings = HuggingFaceEmbeddings()
|
55 |
+
db = FAISS.from_documents(docs, embeddings)
|
56 |
+
|
57 |
+
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.75, "max_length": 2048})
|
58 |
+
chain = load_qa_chain(llm, chain_type="refine")
|
59 |
+
|
60 |
+
def truncate_answer(answer, question, tokenizer, max_total_tokens=1000):
|
61 |
+
special_tokens = 2
|
62 |
+
question_tokens = len(tokenizer.encode(question, return_tensors="pt").squeeze())
|
63 |
+
max_answer_tokens = max_total_tokens - question_tokens - special_tokens
|
64 |
+
answer_tokens = tokenizer.encode(answer, return_tensors="pt").squeeze()
|
65 |
+
truncated_answer = tokenizer.decode(answer_tokens[:max_answer_tokens])
|
66 |
+
return truncated_answer
|
67 |
+
|
68 |
+
def combined_length_exceeds_limit(question, answer, tokenizer, model_token_limit=1024):
|
69 |
+
special_tokens = 2
|
70 |
+
question_tokens = len(tokenizer.encode(question, return_tensors="pt").squeeze())
|
71 |
+
answer_tokens = len(tokenizer.encode(answer, return_tensors="pt").squeeze())
|
72 |
+
return question_tokens + answer_tokens > (model_token_limit - special_tokens)
|
73 |
+
|
74 |
+
def process_question(query):
|
75 |
+
answers = []
|
76 |
+
|
77 |
+
docs = db.similarity_search(query)
|
78 |
+
most_similar_doc = docs[0]
|
79 |
+
print(f"Most similar answer: \n{wrap_text_preserve_newlines(str(most_similar_doc.page_content))}\n")
|
80 |
+
|
81 |
+
query_chunks = split_into_chunks(query, tokenizer, max_tokens=500)
|
82 |
+
|
83 |
+
for query_chunk in query_chunks:
|
84 |
+
if combined_length_exceeds_limit(query_chunk, str(docs[0].page_content), tokenizer):
|
85 |
+
print("The combined length of the question and answer exceeds the model's token limit.")
|
86 |
+
else:
|
87 |
+
truncated_answer = truncate_answer(str(docs[0].page_content), query_chunk, tokenizer, max_total_tokens=500)
|
88 |
+
result = chain.run(input_documents=[TextDocument(content=truncated_answer, id=docs[0].metadata['id'])], question=query_chunk)
|
89 |
+
answers.append(result)
|
90 |
+
|
91 |
+
return answers
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.27.1
|
2 |
+
torch>=1.13.1
|
3 |
+
datasets==2.10.1
|
4 |
+
|
5 |
+
tqdm==4.65.0
|