Spaces:
Runtime error
Runtime error
# Standard Libraries | |
import os | |
import json | |
import time | |
import asyncio | |
import logging | |
import gc | |
import re | |
import traceback | |
from pathlib import Path | |
from datetime import datetime | |
from typing import List, Dict, Union, Tuple, Optional, Any | |
from dataclasses import dataclass, field | |
import zipfile | |
# Machine Learning and Deep Learning Libraries | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.cuda.amp import autocast | |
from torch.utils.data import DataLoader | |
# Hugging Face and Transformers | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer | |
from sentence_transformers import SentenceTransformer | |
from datasets import load_dataset, Dataset, concatenate_datasets | |
from huggingface_hub import login | |
# FAISS and PEFT | |
import faiss | |
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType, PeftModel | |
# LangChain - updated imports as per recent deprecations | |
from langchain_community.vectorstores import FAISS # Updated import | |
from langchain_community.embeddings import HuggingFaceEmbeddings # Updated import | |
from langchain_community.document_loaders import TextLoader # Updated import | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
# External Tools and APIs | |
import wandb | |
import requests | |
import gradio as gr | |
import IPython.display as display # Required for IPython display functionality | |
from dotenv import load_dotenv | |
from tqdm.auto import tqdm | |
# Suppress Warnings | |
import warnings | |
warnings.filterwarnings('ignore') | |
# Ensure Hugging Face login | |
try: | |
hf_token = os.getenv("HF_TOKEN") | |
if hf_token: | |
login(token=hf_token) | |
print("Login successful!") | |
except Exception as e: | |
print("Hugging Face Login failed:", e) | |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:64,garbage_collection_threshold:0.8,expandable_segments:True' | |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' | |
# Setup logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
class ModelManager: | |
"""Handles model loading and resource management""" | |
def verify_and_extract_model(checkpoint_zip_path: str, extracted_model_dir: str) -> str: | |
"""Verify and extract the model if it's not already extracted""" | |
if not os.path.exists(extracted_model_dir): | |
# Unzip the model if it hasnβt been extracted yet | |
with zipfile.ZipFile(checkpoint_zip_path, 'r') as zip_ref: | |
zip_ref.extractall(extracted_model_dir) | |
logger.info(f"Extracted model to: {extracted_model_dir}") | |
else: | |
logger.info(f"Model already extracted: {extracted_model_dir}") | |
return extracted_model_dir | |
def clear_gpu_memory(): | |
"""Clear GPU memory cache""" | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
class PearlyBot: | |
def __init__(self): | |
try: | |
# Use the correct model path from your space | |
self.repo_id = "Pearilsa/pearly_med_triage_chatbot_kagglex" | |
self.model_filename = "pearly_model.zip" | |
self.setup_model() | |
self.setup_rag() | |
self.conversation_history = [] | |
self.last_interaction_time = time.time() | |
self.interaction_cooldown = 1.0 | |
except Exception as e: | |
logger.error(f"Error initializing bot: {e}") | |
raise | |
def setup_model(self): | |
"""Initialize model from Hugging Face space""" | |
try: | |
logger.info(f"Loading model from {self.repo_id}") | |
# Download and prepare model path | |
local_model_path = os.path.join(os.getcwd(), "models") | |
os.makedirs(local_model_path, exist_ok=True) | |
# Load tokenizer and model from the space | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
self.repo_id, | |
token=os.getenv("HF_TOKEN"), # Use your Hugging Face token | |
cache_dir=local_model_path | |
) | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
logger.info("Tokenizer loaded successfully") | |
# Load model with 8-bit quantization | |
self.model = AutoModelForCausalLM.from_pretrained( | |
self.repo_id, | |
token=os.getenv("HF_TOKEN"), | |
device_map="auto", | |
load_in_8bit=True, | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
cache_dir=local_model_path | |
) | |
self.model.eval() | |
logger.info("Model loaded successfully") | |
except Exception as e: | |
logger.error(f"Error in model setup: {str(e)}") | |
raise | |
def setup_rag(self): | |
try: | |
# Add configuration options | |
self.chunk_size = 300 | |
self.chunk_overlap = 100 | |
self.num_relevant_chunks = 3 | |
# Load knowledge base | |
knowledge_base = self._load_knowledge_base() | |
# Setup embeddings with error handling | |
self.embeddings = self._initialize_embeddings() | |
# Enhanced text splitting | |
texts = self._split_texts(knowledge_base) | |
# Create vector store with metadata | |
self.vector_store = FAISS.from_texts( | |
texts, | |
self.embeddings, | |
metadatas=[{"source": f"chunk_{i}"} for i in range(len(texts))] | |
) | |
# Add validation | |
self._validate_rag_setup() | |
except Exception as e: | |
logger.error(f"RAG setup failed: {str(e)}") | |
raise | |
# Load your knowledge base content | |
def _load_knowledge_base(self): | |
"""Load and validate knowledge base content""" | |
try: | |
knowledge_base = { { | |
"triage_scenarios.txt": """Medical Triage Scenarios and Responses: | |
EMERGENCY (999) SCENARIOS: | |
1. Cardiovascular: | |
- Chest pain/pressure | |
- Heart attack symptoms | |
- Irregular heartbeat with dizziness | |
Response: Immediate 999 call, sit/lie down, chew aspirin if available | |
2. Respiratory: | |
- Severe breathing difficulty | |
- Choking | |
- Unable to speak full sentences | |
Response: 999, sitting position, clear airway | |
3. Neurological: | |
- Stroke symptoms (FAST) | |
- Seizures | |
- Unconsciousness | |
Response: 999, recovery position if unconscious | |
4. Trauma: | |
- Severe bleeding | |
- Head injuries with confusion | |
- Major burns | |
Response: 999, apply direct pressure to bleeding | |
URGENT CARE (111) SCENARIOS: | |
1. Moderate Symptoms: | |
- Persistent fever | |
- Non-severe infections | |
- Minor injuries | |
Response: 111 contact, monitor symptoms | |
2. Minor Emergencies: | |
- Small cuts needing stitches | |
- Sprains and strains | |
- Mild allergic reactions | |
Response: 111 or urgent care visit | |
GP APPOINTMENT SCENARIOS: | |
1. Routine Care: | |
- Chronic condition review | |
- Medication reviews | |
- Non-urgent symptoms | |
Response: Book routine GP appointment | |
2. Preventive Care: | |
- Vaccinations | |
- Health screenings | |
- Regular check-ups | |
Response: Schedule with GP reception""", | |
"emergency_detection.txt": """Enhanced Emergency Detection Criteria: | |
IMMEDIATE LIFE THREATS: | |
1. Cardiac Symptoms: | |
- Chest pain/pressure/tightness | |
- Pain spreading to arms/jaw/neck | |
- Sweating with nausea | |
- Shortness of breath | |
2. Breathing Problems: | |
- Severe shortness of breath | |
- Blue lips or face | |
- Unable to complete sentences | |
- Choking/airway blockage | |
3. Neurological: | |
- FAST (Face, Arms, Speech, Time) | |
- Sudden confusion | |
- Severe headache | |
- Seizures | |
- Loss of consciousness | |
4. Severe Trauma: | |
- Heavy bleeding | |
- Deep wounds | |
- Head injury with confusion | |
- Severe burns | |
- Broken bones with deformity | |
5. Anaphylaxis: | |
- Sudden swelling | |
- Difficulty breathing | |
- Rapid onset rash | |
- Light-headedness | |
URGENT BUT NOT IMMEDIATE: | |
1. Moderate Symptoms: | |
- Persistent fever | |
- Dehydration | |
- Non-severe infections | |
- Minor injuries | |
2. Worsening Conditions: | |
- Increasing pain | |
- Progressive symptoms | |
- Medication reactions | |
RESPONSE PROTOCOLS: | |
1. For Life Threats: | |
- Immediate 999 call | |
- Clear first aid instructions | |
- Stay on line until help arrives | |
2. For Urgent Care: | |
- 111 contact | |
- Monitor for worsening | |
- Document symptoms""", | |
"gp_booking.txt": """GP Appointment Booking Templates: | |
APPOINTMENT TYPES: | |
1. Routine Appointments: | |
Template: "I need to book a routine appointment for [condition]. My availability is [times/dates]. My GP is Dr. [name] if available." | |
2. Follow-up Appointments: | |
Template: "I need a follow-up appointment regarding [condition] discussed on [date]. My previous appointment was with Dr. [name]." | |
3. Medication Reviews: | |
Template: "I need a medication review for [medication]. My last review was [date]." | |
BOOKING INFORMATION NEEDED: | |
1. Patient Details: | |
- Full name | |
- Date of birth | |
- NHS number (if known) | |
- Registered GP practice | |
2. Appointment Details: | |
- Nature of appointment | |
- Preferred times/dates | |
- Urgency level | |
- Special requirements | |
3. Contact Information: | |
- Phone number | |
- Alternative contact | |
- Preferred contact method | |
BOOKING PROCESS: | |
1. Online Booking: | |
- NHS app instructions | |
- Practice website guidance | |
- System navigation help | |
2. Phone Booking: | |
- Best times to call | |
- Required information | |
- Queue management tips | |
3. Special Circumstances: | |
- Interpreter needs | |
- Accessibility requirements | |
- Transport arrangements""", | |
"cultural_sensitivity.txt": """Cultural Sensitivity Guidelines: | |
CULTURAL AWARENESS: | |
1. Religious Considerations: | |
- Prayer times | |
- Religious observations | |
- Dietary restrictions | |
- Gender preferences for care | |
- Religious festivals/fasting periods | |
2. Language Support: | |
- Interpreter services | |
- Multi-language resources | |
- Clear communication methods | |
- Family involvement preferences | |
3. Cultural Beliefs: | |
- Traditional medicine practices | |
- Cultural health beliefs | |
- Family decision-making | |
- Privacy customs | |
COMMUNICATION APPROACHES: | |
1. Respectful Interaction: | |
- Use preferred names/titles | |
- Appropriate greetings | |
- Non-judgmental responses | |
- Active listening | |
2. Language Usage: | |
- Clear, simple terms | |
- Avoid medical jargon | |
- Confirm understanding | |
- Respect silence/pauses | |
3. Non-verbal Communication: | |
- Eye contact customs | |
- Personal space | |
- Body language awareness | |
- Gesture sensitivity | |
SPECIFIC CONSIDERATIONS: | |
1. South Asian Communities: | |
- Family involvement | |
- Gender sensitivity | |
- Traditional medicine | |
- Language diversity | |
2. Middle Eastern Communities: | |
- Gender-specific care | |
- Religious observations | |
- Family hierarchies | |
- Privacy concerns | |
3. African/Caribbean Communities: | |
- Traditional healers | |
- Community involvement | |
- Historical medical mistrust | |
- Cultural specific conditions | |
4. Eastern European Communities: | |
- Direct communication | |
- Family involvement | |
- Medical documentation | |
- Language support | |
INCLUSIVE PRACTICES: | |
1. Appointment Scheduling: | |
- Religious holidays | |
- Prayer times | |
- Family availability | |
- Interpreter needs | |
2. Treatment Planning: | |
- Cultural preferences | |
- Traditional practices | |
- Family involvement | |
- Dietary requirements | |
3. Support Services: | |
- Community resources | |
- Cultural organizations | |
- Language services | |
- Social support""", | |
"service_boundaries.txt": """Service Limitations and Professional Boundaries: | |
CLEAR BOUNDARIES: | |
1. Medical Advice: | |
- No diagnoses | |
- No prescriptions | |
- No treatment recommendations | |
- No medical procedures | |
- No second opinions | |
2. Emergency Services: | |
- Clear referral criteria | |
- Documented responses | |
- Follow-up protocols | |
- Handover procedures | |
3. Information Sharing: | |
- Confidentiality limits | |
- Data protection | |
- Record keeping | |
- Information governance | |
PROFESSIONAL CONDUCT: | |
1. Communication: | |
- Professional language | |
- Emotional boundaries | |
- Personal distance | |
- Service scope | |
2. Service Delivery: | |
- No financial transactions | |
- No personal relationships | |
- Clear role definition | |
- Professional limits""" | |
} | |
os.makedirs("knowledge_base", exist_ok=True) | |
# Create and process documents | |
documents = [] | |
for filename, content in knowledge_base.items(): | |
with open(f"knowledge_base/{filename}", "w") as f: | |
f.write(content) | |
documents.append(content) | |
# Setup embeddings and vector store | |
self.embeddings = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/all-MiniLM-L6-v2" | |
) | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=300, | |
chunk_overlap=100 | |
) | |
texts = text_splitter.split_text("\n\n".join(documents)) | |
self.vector_store = FAISS.from_texts(texts, self.embeddings) | |
logger.info("RAG system setup complete") | |
return knowledge_base | |
except Exception as e: | |
logger.error(f"Error setting up RAG: {str(e)}") | |
raise | |
def _validate_rag_setup(self): | |
"""Validate RAG system setup""" | |
try: | |
# Verify embeddings are working | |
test_text = "This is a test embedding" | |
test_embedding = self.embeddings.encode(test_text) | |
assert len(test_embedding) > 0 | |
# Verify vector store is operational | |
test_results = self.vector_store.similarity_search(test_text, k=1) | |
assert len(test_results) > 0 | |
logger.info("RAG system validation successful") | |
return True | |
except Exception as e: | |
logger.error(f"RAG system validation failed: {str(e)}") | |
raise | |
def _initialize_embeddings(self): | |
try: | |
return HuggingFaceEmbeddings( | |
model_name="sentence-transformers/all-MiniLM-L6-v2", | |
cache_folder="./embeddings_cache" # Added caching | |
) | |
except Exception as e: | |
logger.error(f"Failed to initialize embeddings: {str(e)}") | |
raise | |
def _split_texts(self, knowledge_base): | |
splitter = RecursiveCharacterTextSplitter( | |
chunk_size=self.chunk_size, | |
chunk_overlap=self.chunk_overlap, | |
length_function=len, | |
add_start_index=True | |
) | |
all_texts = [] | |
for content in knowledge_base.values(): | |
texts = splitter.split_text(content) | |
all_texts.extend(texts) | |
return all_texts | |
def get_relevant_context(self, query): | |
try: | |
docs = self.vector_store.similarity_search(query, k=3) | |
return "\n".join(doc.page_content for doc in docs) | |
except Exception as e: | |
logger.error(f"Error retrieving context: {str(e)}") | |
return "" | |
def generate_response(self, message: str, history: list) -> str: | |
"""Generate response using both fine-tuned model and RAG""" | |
try: | |
# Rate limiting | |
current_time = time.time() | |
if current_time - self.last_interaction_time < self.interaction_cooldown: | |
time.sleep(self.interaction_cooldown) | |
# Clear GPU memory before generation | |
ModelManager.clear_gpu_memory() | |
# Get RAG context | |
context = self.get_relevant_context(message) | |
# Format conversation history | |
conv_history = "\n".join([ | |
f"User: {user}\nAssistant: {assistant}" | |
for user, assistant in history[-3:] # Keep last 3 turns | |
]) | |
# Create prompt | |
prompt = f"""<start_of_turn>system | |
Using these medical guidelines: | |
{context} | |
Previous conversation: | |
{conv_history} | |
Guidelines: | |
1. Assess symptoms and severity | |
2. Ask relevant follow-up questions | |
3. Direct to appropriate care (999, 111, or GP) | |
4. Show empathy and cultural sensitivity | |
5. Never diagnose or recommend treatments | |
<end_of_turn> | |
<start_of_turn>user | |
{message} | |
<end_of_turn> | |
<start_of_turn>assistant""" | |
# Generate response | |
try: | |
inputs = self.tokenizer( | |
prompt, | |
return_tensors="pt", | |
truncation=True, | |
max_length=512 | |
).to(self.model.device) | |
outputs = self.model.generate( | |
**inputs, | |
max_new_tokens=256, | |
min_new_tokens=20, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.9, | |
repetition_penalty=1.2, | |
no_repeat_ngram_size=3 | |
) | |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
response = response.split("<start_of_turn>assistant")[-1].strip() | |
if "<end_of_turn>" in response: | |
response = response.split("<end_of_turn>")[0].strip() | |
self.last_interaction_time = time.time() | |
return response | |
except torch.cuda.OutOfMemoryError: | |
ModelManager.clear_gpu_memory() | |
logger.error("GPU out of memory, cleared cache and retrying...") | |
return "I apologize, but I'm experiencing technical difficulties. Please try again." | |
except Exception as e: | |
logger.error(f"Error generating response: {str(e)}") | |
return "I apologize, but I encountered an error. Please try again." | |
def handle_feedback(self, message: str, response: str, feedback: int): | |
"""Handle user feedback for responses""" | |
try: | |
timestamp = datetime.now().isoformat() | |
feedback_data = { | |
"message": message, | |
"response": response, | |
"feedback": feedback, | |
"timestamp": timestamp | |
} | |
# Log feedback | |
logger.info(f"Feedback received: {feedback_data}") | |
# Here you could: | |
# 1. Store feedback in a database | |
# 2. Send to monitoring system | |
# 3. Use for model improvements | |
return True | |
except Exception as e: | |
logger.error(f"Error handling feedback: {e}") | |
return False | |
def __del__(self): | |
"""Cleanup resources""" | |
try: | |
if hasattr(self, 'model'): | |
del self.model | |
ModelManager.clear_gpu_memory() | |
except Exception as e: | |
logger.error(f"Error in cleanup: {e}") | |
def create_demo(): | |
try: | |
# Initialize bot | |
bot = PearlyBot() | |
def chat(message: str, history: list): | |
"""Handle chat interactions""" | |
try: | |
if not message.strip(): | |
return history | |
response = bot.generate_response(message, history) | |
history.append({ | |
"role": "user", | |
"content": message | |
}) | |
history.append({ | |
"role": "assistant", | |
"content": response | |
}) | |
return history | |
except Exception as e: | |
logger.error(f"Chat error: {e}") | |
return history + [{ | |
"role": "assistant", | |
"content": "I apologize, but I'm experiencing technical difficulties. For emergencies, please call 999." | |
}] | |
def process_feedback(positive: bool, comment: str, history: list): | |
try: | |
if not history or len(history) < 2: | |
return gr.update(value="") | |
last_user_msg = history[-2]["content"] if isinstance(history[-2], dict) else history[-2][0] | |
last_bot_msg = history[-1]["content"] if isinstance(history[-1], dict) else history[-1][1] | |
bot.handle_feedback( | |
message=last_user_msg, | |
response=last_bot_msg, | |
feedback=1 if positive else -1 | |
) | |
return gr.update(value="") | |
except Exception as e: | |
logger.error(f"Error processing feedback: {e}") | |
return gr.update(value="") | |
# Create Gradio interface | |
with gr.Blocks(theme=gr.themes.Soft(...)) as demo: | |
# 1. First, create all UI elements | |
# CSS styles | |
gr.HTML("""<style>...""") | |
# Emergency Banner | |
gr.HTML("""<div class="emergency-banner">...""") | |
# Header | |
with gr.Row(elem_classes="header"): | |
gr.Markdown("""# GP Medical Triage Assistant...""") | |
# Features Grid | |
gr.HTML("""<div class="features-grid">...""") | |
# Chat Interface | |
with gr.Row(): | |
with gr.Column(scale=4): | |
chatbot = gr.Chatbot(...) | |
with gr.Row(): | |
msg = gr.Textbox(...) | |
submit = gr.Button(...) | |
with gr.Column(scale=1): | |
# Quick Actions | |
emergency_btn = gr.Button("π¨ Emergency Info", variant="secondary") | |
nhs_111_btn = gr.Button("π NHS 111 Info", variant="secondary") | |
booking_btn = gr.Button("π GP Booking", variant="secondary") | |
# Controls | |
clear = gr.Button("ποΈ Clear Chat") | |
# Feedback | |
with gr.Row(): | |
feedback_positive = gr.Button("π", elem_id="thumb-up") | |
feedback_negative = gr.Button("π", elem_id="thumb-down") | |
feedback_text = gr.Textbox(...) | |
feedback_submit = gr.Button(...) | |
# Examples and Guide | |
with gr.Accordion("Example Messages", open=False): | |
gr.Examples([...]) | |
with gr.Accordion("NHS Services Guide", open=False): | |
gr.Markdown("""...""") | |
# Create enhanced Gradio interface | |
with gr.Blocks(theme=gr.themes.Soft( | |
primary_hue="blue", | |
secondary_hue="indigo", | |
neutral_hue="slate", | |
font=gr.themes.GoogleFont("Inter") | |
)) as demo: | |
# Custom CSS for enhanced styling | |
gr.HTML(""" | |
<style> | |
.container { max-width: 900px; margin: auto; } | |
.header { text-align: center; padding: 20px; } | |
.emergency-banner { | |
background-color: #ff4444; | |
color: white; | |
padding: 10px; | |
text-align: center; | |
font-weight: bold; | |
margin-bottom: 20px; | |
} | |
.feature-card { | |
padding: 15px; | |
border-radius: 10px; | |
text-align: center; | |
transition: transform 0.2s; | |
color: white; | |
font-weight: bold; | |
} | |
.feature-card:nth-child(1) { background: linear-gradient(135deg, #2193b0, #6dd5ed); } | |
.feature-card:nth-child(2) { background: linear-gradient(135deg, #834d9b, #d04ed6); } | |
.feature-card:nth-child(3) { background: linear-gradient(135deg, #ff4b1f, #ff9068); } | |
.feature-card:nth-child(4) { background: linear-gradient(135deg, #38ef7d, #11998e); } | |
.feature-card:hover { | |
transform: translateY(-5px); | |
box-shadow: 0 5px 15px rgba(0,0,0,0.2); | |
} | |
.feature-card span.emoji { | |
font-size: 2em; | |
display: block; | |
margin-bottom: 10px; | |
} | |
.message-textbox textarea { resize: none; } | |
#thumb-up, #thumb-down { | |
min-width: 60px; | |
padding: 8px; | |
margin: 5px; | |
} | |
.chatbot-message { | |
padding: 12px; | |
margin: 8px 0; | |
border-radius: 8px; | |
} | |
.user-message { background-color: #e3f2fd; } | |
.assistant-message { background-color: #f5f5f5; } | |
.feedback-section { | |
margin-top: 20px; | |
padding: 15px; | |
border-radius: 8px; | |
background-color: #f8f9fa; | |
} | |
</style> | |
""") | |
# Emergency Banner | |
gr.HTML(""" | |
<div class="emergency-banner"> | |
π¨ For medical emergencies, always call 999 immediately π¨ | |
</div> | |
""") | |
# Header Section | |
with gr.Row(elem_classes="header"): | |
gr.Markdown(""" | |
# GP Medical Triage Assistant - Pearly | |
Welcome to your personal medical triage assistant. I'm here to help assess your symptoms and guide you to appropriate care. | |
""") | |
# Main Features Grid | |
gr.HTML(""" | |
<div class="features-grid"> | |
<div class="feature-card"> | |
<span class="emoji">π₯</span> | |
<div>GP Appointments</div> | |
</div> | |
<div class="feature-card"> | |
<span class="emoji">π</span> | |
<div>Symptom Assessment</div> | |
</div> | |
<div class="feature-card"> | |
<span class="emoji">β‘</span> | |
<div>Urgent Care Guide</div> | |
</div> | |
<div class="feature-card"> | |
<span class="emoji">π</span> | |
<div>Medical Advice</div> | |
</div> | |
</div> | |
""") | |
# Chat Interface | |
with gr.Row(): | |
with gr.Column(scale=4): | |
chatbot = gr.Chatbot( | |
value=[{ | |
"role": "assistant", | |
"content": "Hello! I'm Pearly, your GP medical assistant. How can I help you today?" | |
}], | |
height=500, | |
elem_id="chatbot", | |
type="messages", | |
show_label=False | |
) | |
with gr.Row(): | |
msg = gr.Textbox( | |
label="Your message", | |
placeholder="Type your message here...", | |
lines=2, | |
scale=4, | |
autofocus=True, | |
submit_on_enter=True | |
) | |
submit = gr.Button("Send", variant="primary", scale=1) | |
with gr.Column(scale=1): | |
# Quick Actions Panel | |
gr.Markdown("### Quick Actions") | |
emergency_btn = gr.Button("π¨ Emergency Info", variant="secondary") | |
nhs_111_btn = gr.Button("π NHS 111 Info", variant="secondary") | |
booking_btn = gr.Button("π GP Booking", variant="secondary") | |
# Controls and Feedback | |
gr.Markdown("### Controls") | |
clear = gr.Button("ποΈ Clear Chat") | |
gr.Markdown("### Feedback") | |
with gr.Row(): | |
feedback_positive = gr.Button("π", elem_id="thumb-up") | |
feedback_negative = gr.Button("π", elem_id="thumb-down") | |
feedback_text = gr.Textbox( | |
label="Additional comments", | |
placeholder="Tell us more...", | |
lines=2, | |
visible=True | |
) | |
feedback_submit = gr.Button("Submit Feedback", visible=True) | |
# Examples and Information | |
with gr.Accordion("Example Messages", open=False): | |
gr.Examples([ | |
["I've been having severe headaches for the past week"], | |
["I need to book a routine checkup"], | |
["I'm feeling very anxious lately and need help"], | |
["My child has had a fever for 2 days"], | |
["I need information about COVID-19 testing"] | |
], inputs=msg) | |
with gr.Accordion("NHS Services Guide", open=False): | |
gr.Markdown(""" | |
### Emergency Services (999) | |
- Life-threatening emergencies | |
- Severe injuries | |
- Suspected heart attack or stroke | |
### NHS 111 | |
- Urgent but non-emergency situations | |
- Medical advice needed | |
- Unsure where to go | |
### GP Services | |
- Routine check-ups | |
- Non-urgent medical issues | |
- Prescription renewals | |
""") | |
def show_emergency_info(): | |
return """π¨ Emergency Services (999) | |
- For life-threatening emergencies | |
- Severe chest pain | |
- Difficulty breathing | |
- Severe bleeding | |
- Loss of consciousness | |
""" | |
def show_nhs_111_info(): | |
return """π NHS 111 Service | |
- Available 24/7 | |
- Medical advice | |
- Local service information | |
- Urgent care guidance | |
""" | |
def show_booking_info(): | |
return """π GP Booking Options | |
- Online booking | |
- Phone booking | |
- Routine appointments | |
- Urgent appointments | |
""" | |
# Chat handlers | |
msg.submit(chat, [msg, chatbot], [chatbot]).then( | |
lambda: gr.update(value=""), None, [msg] | |
) | |
submit.click(chat, [msg, chatbot], [chatbot]).then( | |
lambda: gr.update(value=""), None, [msg] | |
) | |
# Quick action handlers | |
emergency_btn.click(lambda: show_emergency_info(), outputs=[msg]) | |
nhs_111_btn.click(lambda: show_nhs_111_info(), outputs=[msg]) | |
booking_btn.click(lambda: show_booking_info(), outputs=[msg]) | |
# Feedback handlers | |
feedback_positive.click( | |
lambda h: process_feedback(True, feedback_text.value, h), | |
inputs=[chatbot], | |
outputs=[feedback_text] | |
) | |
feedback_negative.click( | |
lambda h: process_feedback(False, feedback_text.value, h), | |
inputs=[chatbot], | |
outputs=[feedback_text] | |
) | |
# Clear chat | |
clear.click(lambda: None, None, chatbot) | |
# 3. Finally, add the queue | |
demo.queue(concurrency_count=1, max_size=10) | |
return demo | |
except Exception as e: | |
logger.error(f"Error creating demo: {e}") | |
raise | |
if __name__ == "__main__": | |
try: | |
# Initialize logging | |
logging.basicConfig(level=logging.INFO) | |
# Load environment variables | |
load_dotenv() | |
# Create and launch demo | |
demo = create_demo() | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
show_error=True | |
) | |
except Exception as e: | |
logger.error(f"Application startup failed: {e}") | |
raise | |