PearlIsa's picture
Update app.py
df172c4 verified
raw
history blame
36.9 kB
# Standard Libraries
import os
import json
import time
import asyncio
import logging
import gc
import re
import traceback
from pathlib import Path
from datetime import datetime
from typing import List, Dict, Union, Tuple, Optional, Any
from dataclasses import dataclass, field
import zipfile
# Machine Learning and Deep Learning Libraries
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import autocast
from torch.utils.data import DataLoader
# Hugging Face and Transformers
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
from sentence_transformers import SentenceTransformer
from datasets import load_dataset, Dataset, concatenate_datasets
from huggingface_hub import login
# FAISS and PEFT
import faiss
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType, PeftModel
# LangChain - updated imports as per recent deprecations
from langchain_community.vectorstores import FAISS # Updated import
from langchain_community.embeddings import HuggingFaceEmbeddings # Updated import
from langchain_community.document_loaders import TextLoader # Updated import
from langchain.text_splitter import RecursiveCharacterTextSplitter
# External Tools and APIs
import wandb
import requests
import gradio as gr
import IPython.display as display # Required for IPython display functionality
from dotenv import load_dotenv
from tqdm.auto import tqdm
# Suppress Warnings
import warnings
warnings.filterwarnings('ignore')
# Ensure Hugging Face login
try:
hf_token = os.getenv("HF_TOKEN")
if hf_token:
login(token=hf_token)
print("Login successful!")
except Exception as e:
print("Hugging Face Login failed:", e)
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:64,garbage_collection_threshold:0.8,expandable_segments:True'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ModelManager:
"""Handles model loading and resource management"""
@staticmethod
def verify_and_extract_model(checkpoint_zip_path: str, extracted_model_dir: str) -> str:
"""Verify and extract the model if it's not already extracted"""
if not os.path.exists(extracted_model_dir):
# Unzip the model if it hasn’t been extracted yet
with zipfile.ZipFile(checkpoint_zip_path, 'r') as zip_ref:
zip_ref.extractall(extracted_model_dir)
logger.info(f"Extracted model to: {extracted_model_dir}")
else:
logger.info(f"Model already extracted: {extracted_model_dir}")
return extracted_model_dir
@staticmethod
def clear_gpu_memory():
"""Clear GPU memory cache"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
class PearlyBot:
def __init__(self):
try:
# Use the correct model path from your space
self.repo_id = "Pearilsa/pearly_med_triage_chatbot_kagglex"
self.model_filename = "pearly_model.zip"
self.setup_model()
self.setup_rag()
self.conversation_history = []
self.last_interaction_time = time.time()
self.interaction_cooldown = 1.0
except Exception as e:
logger.error(f"Error initializing bot: {e}")
raise
def setup_model(self):
"""Initialize model from Hugging Face space"""
try:
logger.info(f"Loading model from {self.repo_id}")
# Download and prepare model path
local_model_path = os.path.join(os.getcwd(), "models")
os.makedirs(local_model_path, exist_ok=True)
# Load tokenizer and model from the space
self.tokenizer = AutoTokenizer.from_pretrained(
self.repo_id,
token=os.getenv("HF_TOKEN"), # Use your Hugging Face token
cache_dir=local_model_path
)
self.tokenizer.pad_token = self.tokenizer.eos_token
logger.info("Tokenizer loaded successfully")
# Load model with 8-bit quantization
self.model = AutoModelForCausalLM.from_pretrained(
self.repo_id,
token=os.getenv("HF_TOKEN"),
device_map="auto",
load_in_8bit=True,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
cache_dir=local_model_path
)
self.model.eval()
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Error in model setup: {str(e)}")
raise
def setup_rag(self):
try:
# Add configuration options
self.chunk_size = 300
self.chunk_overlap = 100
self.num_relevant_chunks = 3
# Load knowledge base
knowledge_base = self._load_knowledge_base()
# Setup embeddings with error handling
self.embeddings = self._initialize_embeddings()
# Enhanced text splitting
texts = self._split_texts(knowledge_base)
# Create vector store with metadata
self.vector_store = FAISS.from_texts(
texts,
self.embeddings,
metadatas=[{"source": f"chunk_{i}"} for i in range(len(texts))]
)
# Add validation
self._validate_rag_setup()
except Exception as e:
logger.error(f"RAG setup failed: {str(e)}")
raise
# Load your knowledge base content
def _load_knowledge_base(self):
"""Load and validate knowledge base content"""
try:
knowledge_base = { {
"triage_scenarios.txt": """Medical Triage Scenarios and Responses:
EMERGENCY (999) SCENARIOS:
1. Cardiovascular:
- Chest pain/pressure
- Heart attack symptoms
- Irregular heartbeat with dizziness
Response: Immediate 999 call, sit/lie down, chew aspirin if available
2. Respiratory:
- Severe breathing difficulty
- Choking
- Unable to speak full sentences
Response: 999, sitting position, clear airway
3. Neurological:
- Stroke symptoms (FAST)
- Seizures
- Unconsciousness
Response: 999, recovery position if unconscious
4. Trauma:
- Severe bleeding
- Head injuries with confusion
- Major burns
Response: 999, apply direct pressure to bleeding
URGENT CARE (111) SCENARIOS:
1. Moderate Symptoms:
- Persistent fever
- Non-severe infections
- Minor injuries
Response: 111 contact, monitor symptoms
2. Minor Emergencies:
- Small cuts needing stitches
- Sprains and strains
- Mild allergic reactions
Response: 111 or urgent care visit
GP APPOINTMENT SCENARIOS:
1. Routine Care:
- Chronic condition review
- Medication reviews
- Non-urgent symptoms
Response: Book routine GP appointment
2. Preventive Care:
- Vaccinations
- Health screenings
- Regular check-ups
Response: Schedule with GP reception""",
"emergency_detection.txt": """Enhanced Emergency Detection Criteria:
IMMEDIATE LIFE THREATS:
1. Cardiac Symptoms:
- Chest pain/pressure/tightness
- Pain spreading to arms/jaw/neck
- Sweating with nausea
- Shortness of breath
2. Breathing Problems:
- Severe shortness of breath
- Blue lips or face
- Unable to complete sentences
- Choking/airway blockage
3. Neurological:
- FAST (Face, Arms, Speech, Time)
- Sudden confusion
- Severe headache
- Seizures
- Loss of consciousness
4. Severe Trauma:
- Heavy bleeding
- Deep wounds
- Head injury with confusion
- Severe burns
- Broken bones with deformity
5. Anaphylaxis:
- Sudden swelling
- Difficulty breathing
- Rapid onset rash
- Light-headedness
URGENT BUT NOT IMMEDIATE:
1. Moderate Symptoms:
- Persistent fever
- Dehydration
- Non-severe infections
- Minor injuries
2. Worsening Conditions:
- Increasing pain
- Progressive symptoms
- Medication reactions
RESPONSE PROTOCOLS:
1. For Life Threats:
- Immediate 999 call
- Clear first aid instructions
- Stay on line until help arrives
2. For Urgent Care:
- 111 contact
- Monitor for worsening
- Document symptoms""",
"gp_booking.txt": """GP Appointment Booking Templates:
APPOINTMENT TYPES:
1. Routine Appointments:
Template: "I need to book a routine appointment for [condition]. My availability is [times/dates]. My GP is Dr. [name] if available."
2. Follow-up Appointments:
Template: "I need a follow-up appointment regarding [condition] discussed on [date]. My previous appointment was with Dr. [name]."
3. Medication Reviews:
Template: "I need a medication review for [medication]. My last review was [date]."
BOOKING INFORMATION NEEDED:
1. Patient Details:
- Full name
- Date of birth
- NHS number (if known)
- Registered GP practice
2. Appointment Details:
- Nature of appointment
- Preferred times/dates
- Urgency level
- Special requirements
3. Contact Information:
- Phone number
- Alternative contact
- Preferred contact method
BOOKING PROCESS:
1. Online Booking:
- NHS app instructions
- Practice website guidance
- System navigation help
2. Phone Booking:
- Best times to call
- Required information
- Queue management tips
3. Special Circumstances:
- Interpreter needs
- Accessibility requirements
- Transport arrangements""",
"cultural_sensitivity.txt": """Cultural Sensitivity Guidelines:
CULTURAL AWARENESS:
1. Religious Considerations:
- Prayer times
- Religious observations
- Dietary restrictions
- Gender preferences for care
- Religious festivals/fasting periods
2. Language Support:
- Interpreter services
- Multi-language resources
- Clear communication methods
- Family involvement preferences
3. Cultural Beliefs:
- Traditional medicine practices
- Cultural health beliefs
- Family decision-making
- Privacy customs
COMMUNICATION APPROACHES:
1. Respectful Interaction:
- Use preferred names/titles
- Appropriate greetings
- Non-judgmental responses
- Active listening
2. Language Usage:
- Clear, simple terms
- Avoid medical jargon
- Confirm understanding
- Respect silence/pauses
3. Non-verbal Communication:
- Eye contact customs
- Personal space
- Body language awareness
- Gesture sensitivity
SPECIFIC CONSIDERATIONS:
1. South Asian Communities:
- Family involvement
- Gender sensitivity
- Traditional medicine
- Language diversity
2. Middle Eastern Communities:
- Gender-specific care
- Religious observations
- Family hierarchies
- Privacy concerns
3. African/Caribbean Communities:
- Traditional healers
- Community involvement
- Historical medical mistrust
- Cultural specific conditions
4. Eastern European Communities:
- Direct communication
- Family involvement
- Medical documentation
- Language support
INCLUSIVE PRACTICES:
1. Appointment Scheduling:
- Religious holidays
- Prayer times
- Family availability
- Interpreter needs
2. Treatment Planning:
- Cultural preferences
- Traditional practices
- Family involvement
- Dietary requirements
3. Support Services:
- Community resources
- Cultural organizations
- Language services
- Social support""",
"service_boundaries.txt": """Service Limitations and Professional Boundaries:
CLEAR BOUNDARIES:
1. Medical Advice:
- No diagnoses
- No prescriptions
- No treatment recommendations
- No medical procedures
- No second opinions
2. Emergency Services:
- Clear referral criteria
- Documented responses
- Follow-up protocols
- Handover procedures
3. Information Sharing:
- Confidentiality limits
- Data protection
- Record keeping
- Information governance
PROFESSIONAL CONDUCT:
1. Communication:
- Professional language
- Emotional boundaries
- Personal distance
- Service scope
2. Service Delivery:
- No financial transactions
- No personal relationships
- Clear role definition
- Professional limits"""
}
os.makedirs("knowledge_base", exist_ok=True)
# Create and process documents
documents = []
for filename, content in knowledge_base.items():
with open(f"knowledge_base/{filename}", "w") as f:
f.write(content)
documents.append(content)
# Setup embeddings and vector store
self.embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=300,
chunk_overlap=100
)
texts = text_splitter.split_text("\n\n".join(documents))
self.vector_store = FAISS.from_texts(texts, self.embeddings)
logger.info("RAG system setup complete")
return knowledge_base
except Exception as e:
logger.error(f"Error setting up RAG: {str(e)}")
raise
def _validate_rag_setup(self):
"""Validate RAG system setup"""
try:
# Verify embeddings are working
test_text = "This is a test embedding"
test_embedding = self.embeddings.encode(test_text)
assert len(test_embedding) > 0
# Verify vector store is operational
test_results = self.vector_store.similarity_search(test_text, k=1)
assert len(test_results) > 0
logger.info("RAG system validation successful")
return True
except Exception as e:
logger.error(f"RAG system validation failed: {str(e)}")
raise
def _initialize_embeddings(self):
try:
return HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
cache_folder="./embeddings_cache" # Added caching
)
except Exception as e:
logger.error(f"Failed to initialize embeddings: {str(e)}")
raise
def _split_texts(self, knowledge_base):
splitter = RecursiveCharacterTextSplitter(
chunk_size=self.chunk_size,
chunk_overlap=self.chunk_overlap,
length_function=len,
add_start_index=True
)
all_texts = []
for content in knowledge_base.values():
texts = splitter.split_text(content)
all_texts.extend(texts)
return all_texts
def get_relevant_context(self, query):
try:
docs = self.vector_store.similarity_search(query, k=3)
return "\n".join(doc.page_content for doc in docs)
except Exception as e:
logger.error(f"Error retrieving context: {str(e)}")
return ""
@torch.inference_mode()
def generate_response(self, message: str, history: list) -> str:
"""Generate response using both fine-tuned model and RAG"""
try:
# Rate limiting
current_time = time.time()
if current_time - self.last_interaction_time < self.interaction_cooldown:
time.sleep(self.interaction_cooldown)
# Clear GPU memory before generation
ModelManager.clear_gpu_memory()
# Get RAG context
context = self.get_relevant_context(message)
# Format conversation history
conv_history = "\n".join([
f"User: {user}\nAssistant: {assistant}"
for user, assistant in history[-3:] # Keep last 3 turns
])
# Create prompt
prompt = f"""<start_of_turn>system
Using these medical guidelines:
{context}
Previous conversation:
{conv_history}
Guidelines:
1. Assess symptoms and severity
2. Ask relevant follow-up questions
3. Direct to appropriate care (999, 111, or GP)
4. Show empathy and cultural sensitivity
5. Never diagnose or recommend treatments
<end_of_turn>
<start_of_turn>user
{message}
<end_of_turn>
<start_of_turn>assistant"""
# Generate response
try:
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=512
).to(self.model.device)
outputs = self.model.generate(
**inputs,
max_new_tokens=256,
min_new_tokens=20,
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.2,
no_repeat_ngram_size=3
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("<start_of_turn>assistant")[-1].strip()
if "<end_of_turn>" in response:
response = response.split("<end_of_turn>")[0].strip()
self.last_interaction_time = time.time()
return response
except torch.cuda.OutOfMemoryError:
ModelManager.clear_gpu_memory()
logger.error("GPU out of memory, cleared cache and retrying...")
return "I apologize, but I'm experiencing technical difficulties. Please try again."
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
return "I apologize, but I encountered an error. Please try again."
def handle_feedback(self, message: str, response: str, feedback: int):
"""Handle user feedback for responses"""
try:
timestamp = datetime.now().isoformat()
feedback_data = {
"message": message,
"response": response,
"feedback": feedback,
"timestamp": timestamp
}
# Log feedback
logger.info(f"Feedback received: {feedback_data}")
# Here you could:
# 1. Store feedback in a database
# 2. Send to monitoring system
# 3. Use for model improvements
return True
except Exception as e:
logger.error(f"Error handling feedback: {e}")
return False
def __del__(self):
"""Cleanup resources"""
try:
if hasattr(self, 'model'):
del self.model
ModelManager.clear_gpu_memory()
except Exception as e:
logger.error(f"Error in cleanup: {e}")
def create_demo():
try:
# Initialize bot
bot = PearlyBot()
def chat(message: str, history: list):
"""Handle chat interactions"""
try:
if not message.strip():
return history
response = bot.generate_response(message, history)
history.append({
"role": "user",
"content": message
})
history.append({
"role": "assistant",
"content": response
})
return history
except Exception as e:
logger.error(f"Chat error: {e}")
return history + [{
"role": "assistant",
"content": "I apologize, but I'm experiencing technical difficulties. For emergencies, please call 999."
}]
def process_feedback(positive: bool, comment: str, history: list):
try:
if not history or len(history) < 2:
return gr.update(value="")
last_user_msg = history[-2]["content"] if isinstance(history[-2], dict) else history[-2][0]
last_bot_msg = history[-1]["content"] if isinstance(history[-1], dict) else history[-1][1]
bot.handle_feedback(
message=last_user_msg,
response=last_bot_msg,
feedback=1 if positive else -1
)
return gr.update(value="")
except Exception as e:
logger.error(f"Error processing feedback: {e}")
return gr.update(value="")
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft(...)) as demo:
# 1. First, create all UI elements
# CSS styles
gr.HTML("""<style>...""")
# Emergency Banner
gr.HTML("""<div class="emergency-banner">...""")
# Header
with gr.Row(elem_classes="header"):
gr.Markdown("""# GP Medical Triage Assistant...""")
# Features Grid
gr.HTML("""<div class="features-grid">...""")
# Chat Interface
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(...)
with gr.Row():
msg = gr.Textbox(...)
submit = gr.Button(...)
with gr.Column(scale=1):
# Quick Actions
emergency_btn = gr.Button("🚨 Emergency Info", variant="secondary")
nhs_111_btn = gr.Button("πŸ“ž NHS 111 Info", variant="secondary")
booking_btn = gr.Button("πŸ“… GP Booking", variant="secondary")
# Controls
clear = gr.Button("πŸ—‘οΈ Clear Chat")
# Feedback
with gr.Row():
feedback_positive = gr.Button("πŸ‘", elem_id="thumb-up")
feedback_negative = gr.Button("πŸ‘Ž", elem_id="thumb-down")
feedback_text = gr.Textbox(...)
feedback_submit = gr.Button(...)
# Examples and Guide
with gr.Accordion("Example Messages", open=False):
gr.Examples([...])
with gr.Accordion("NHS Services Guide", open=False):
gr.Markdown("""...""")
# Create enhanced Gradio interface
with gr.Blocks(theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="indigo",
neutral_hue="slate",
font=gr.themes.GoogleFont("Inter")
)) as demo:
# Custom CSS for enhanced styling
gr.HTML("""
<style>
.container { max-width: 900px; margin: auto; }
.header { text-align: center; padding: 20px; }
.emergency-banner {
background-color: #ff4444;
color: white;
padding: 10px;
text-align: center;
font-weight: bold;
margin-bottom: 20px;
}
.feature-card {
padding: 15px;
border-radius: 10px;
text-align: center;
transition: transform 0.2s;
color: white;
font-weight: bold;
}
.feature-card:nth-child(1) { background: linear-gradient(135deg, #2193b0, #6dd5ed); }
.feature-card:nth-child(2) { background: linear-gradient(135deg, #834d9b, #d04ed6); }
.feature-card:nth-child(3) { background: linear-gradient(135deg, #ff4b1f, #ff9068); }
.feature-card:nth-child(4) { background: linear-gradient(135deg, #38ef7d, #11998e); }
.feature-card:hover {
transform: translateY(-5px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.feature-card span.emoji {
font-size: 2em;
display: block;
margin-bottom: 10px;
}
.message-textbox textarea { resize: none; }
#thumb-up, #thumb-down {
min-width: 60px;
padding: 8px;
margin: 5px;
}
.chatbot-message {
padding: 12px;
margin: 8px 0;
border-radius: 8px;
}
.user-message { background-color: #e3f2fd; }
.assistant-message { background-color: #f5f5f5; }
.feedback-section {
margin-top: 20px;
padding: 15px;
border-radius: 8px;
background-color: #f8f9fa;
}
</style>
""")
# Emergency Banner
gr.HTML("""
<div class="emergency-banner">
🚨 For medical emergencies, always call 999 immediately 🚨
</div>
""")
# Header Section
with gr.Row(elem_classes="header"):
gr.Markdown("""
# GP Medical Triage Assistant - Pearly
Welcome to your personal medical triage assistant. I'm here to help assess your symptoms and guide you to appropriate care.
""")
# Main Features Grid
gr.HTML("""
<div class="features-grid">
<div class="feature-card">
<span class="emoji">πŸ₯</span>
<div>GP Appointments</div>
</div>
<div class="feature-card">
<span class="emoji">πŸ”</span>
<div>Symptom Assessment</div>
</div>
<div class="feature-card">
<span class="emoji">⚑</span>
<div>Urgent Care Guide</div>
</div>
<div class="feature-card">
<span class="emoji">πŸ’Š</span>
<div>Medical Advice</div>
</div>
</div>
""")
# Chat Interface
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
value=[{
"role": "assistant",
"content": "Hello! I'm Pearly, your GP medical assistant. How can I help you today?"
}],
height=500,
elem_id="chatbot",
type="messages",
show_label=False
)
with gr.Row():
msg = gr.Textbox(
label="Your message",
placeholder="Type your message here...",
lines=2,
scale=4,
autofocus=True,
submit_on_enter=True
)
submit = gr.Button("Send", variant="primary", scale=1)
with gr.Column(scale=1):
# Quick Actions Panel
gr.Markdown("### Quick Actions")
emergency_btn = gr.Button("🚨 Emergency Info", variant="secondary")
nhs_111_btn = gr.Button("πŸ“ž NHS 111 Info", variant="secondary")
booking_btn = gr.Button("πŸ“… GP Booking", variant="secondary")
# Controls and Feedback
gr.Markdown("### Controls")
clear = gr.Button("πŸ—‘οΈ Clear Chat")
gr.Markdown("### Feedback")
with gr.Row():
feedback_positive = gr.Button("πŸ‘", elem_id="thumb-up")
feedback_negative = gr.Button("πŸ‘Ž", elem_id="thumb-down")
feedback_text = gr.Textbox(
label="Additional comments",
placeholder="Tell us more...",
lines=2,
visible=True
)
feedback_submit = gr.Button("Submit Feedback", visible=True)
# Examples and Information
with gr.Accordion("Example Messages", open=False):
gr.Examples([
["I've been having severe headaches for the past week"],
["I need to book a routine checkup"],
["I'm feeling very anxious lately and need help"],
["My child has had a fever for 2 days"],
["I need information about COVID-19 testing"]
], inputs=msg)
with gr.Accordion("NHS Services Guide", open=False):
gr.Markdown("""
### Emergency Services (999)
- Life-threatening emergencies
- Severe injuries
- Suspected heart attack or stroke
### NHS 111
- Urgent but non-emergency situations
- Medical advice needed
- Unsure where to go
### GP Services
- Routine check-ups
- Non-urgent medical issues
- Prescription renewals
""")
def show_emergency_info():
return """🚨 Emergency Services (999)
- For life-threatening emergencies
- Severe chest pain
- Difficulty breathing
- Severe bleeding
- Loss of consciousness
"""
def show_nhs_111_info():
return """πŸ“ž NHS 111 Service
- Available 24/7
- Medical advice
- Local service information
- Urgent care guidance
"""
def show_booking_info():
return """πŸ“… GP Booking Options
- Online booking
- Phone booking
- Routine appointments
- Urgent appointments
"""
# Chat handlers
msg.submit(chat, [msg, chatbot], [chatbot]).then(
lambda: gr.update(value=""), None, [msg]
)
submit.click(chat, [msg, chatbot], [chatbot]).then(
lambda: gr.update(value=""), None, [msg]
)
# Quick action handlers
emergency_btn.click(lambda: show_emergency_info(), outputs=[msg])
nhs_111_btn.click(lambda: show_nhs_111_info(), outputs=[msg])
booking_btn.click(lambda: show_booking_info(), outputs=[msg])
# Feedback handlers
feedback_positive.click(
lambda h: process_feedback(True, feedback_text.value, h),
inputs=[chatbot],
outputs=[feedback_text]
)
feedback_negative.click(
lambda h: process_feedback(False, feedback_text.value, h),
inputs=[chatbot],
outputs=[feedback_text]
)
# Clear chat
clear.click(lambda: None, None, chatbot)
# 3. Finally, add the queue
demo.queue(concurrency_count=1, max_size=10)
return demo
except Exception as e:
logger.error(f"Error creating demo: {e}")
raise
if __name__ == "__main__":
try:
# Initialize logging
logging.basicConfig(level=logging.INFO)
# Load environment variables
load_dotenv()
# Create and launch demo
demo = create_demo()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
except Exception as e:
logger.error(f"Application startup failed: {e}")
raise