Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,66 @@
|
|
1 |
import os
|
2 |
import openai
|
|
|
|
|
3 |
import gradio as gr
|
|
|
|
|
|
|
4 |
|
5 |
openai.api_key = os.getenv('OPEN_AI_KEY')
|
6 |
hf_t_key = ('HF_TOKEN_KEY')
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def predict(message, history):
|
9 |
history_openai_format = []
|
10 |
for human, assistant in history:
|
@@ -57,5 +113,35 @@ A4 = gr.load(
|
|
57 |
allow_flagging="never",
|
58 |
examples=["A gigantic celtic leprechaun wandering the streets of downtown Atlanta","A child eating pizza in a Brazilian favela"])
|
59 |
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import openai
|
3 |
+
import torch
|
4 |
+
|
5 |
import gradio as gr
|
6 |
+
import pytube as pt
|
7 |
+
from transformers import pipeline
|
8 |
+
from huggingface_hub import model_info
|
9 |
|
10 |
openai.api_key = os.getenv('OPEN_AI_KEY')
|
11 |
hf_t_key = ('HF_TOKEN_KEY')
|
12 |
|
13 |
+
MODEL_NAME = "openai/whisper-small"
|
14 |
+
lang = "en
|
15 |
+
|
16 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
17 |
+
pipe = pipeline(
|
18 |
+
task="automatic-speech-recognition",
|
19 |
+
model=MODEL_NAME,
|
20 |
+
chunk_length_s=30,
|
21 |
+
device=device,
|
22 |
+
)
|
23 |
+
|
24 |
+
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
|
25 |
+
|
26 |
+
def transcribe(microphone, file_upload):
|
27 |
+
warn_output = ""
|
28 |
+
if (microphone is not None) and (file_upload is not None):
|
29 |
+
warn_output = (
|
30 |
+
"WARNING: You've uploaded an audio file and or recorded . "
|
31 |
+
"The recorded file from the microphone uploaded, transcribed and immediately discarded.\n"
|
32 |
+
)
|
33 |
+
|
34 |
+
elif (microphone is None) and (file_upload is None):
|
35 |
+
return "ERROR: You have to either use the microphone or upload an audio file"
|
36 |
+
|
37 |
+
file = microphone if microphone is not None else file_upload
|
38 |
+
|
39 |
+
text = pipe(file)["text"]
|
40 |
+
|
41 |
+
return warn_output + text
|
42 |
+
|
43 |
+
|
44 |
+
def _return_yt_html_embed(yt_url):
|
45 |
+
video_id = yt_url.split("?v=")[-1]
|
46 |
+
HTML_str = (
|
47 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
48 |
+
" </center>"
|
49 |
+
)
|
50 |
+
return HTML_str
|
51 |
+
|
52 |
+
|
53 |
+
def yt_transcribe(yt_url):
|
54 |
+
yt = pt.YouTube(yt_url)
|
55 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
56 |
+
stream = yt.streams.filter(only_audio=True)[0]
|
57 |
+
stream.download(filename="audio.mp3")
|
58 |
+
|
59 |
+
text = pipe("audio.mp3")["text"]
|
60 |
+
|
61 |
+
return html_embed_str, text
|
62 |
+
|
63 |
+
|
64 |
def predict(message, history):
|
65 |
history_openai_format = []
|
66 |
for human, assistant in history:
|
|
|
113 |
allow_flagging="never",
|
114 |
examples=["A gigantic celtic leprechaun wandering the streets of downtown Atlanta","A child eating pizza in a Brazilian favela"])
|
115 |
|
116 |
+
mf_transcribe = gr.Interface(
|
117 |
+
fn=transcribe,
|
118 |
+
inputs=[
|
119 |
+
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
120 |
+
gr.inputs.Audio(source="upload", type="filepath", optional=True),
|
121 |
+
],
|
122 |
+
outputs="text",
|
123 |
+
layout="horizontal",
|
124 |
+
theme="huggingface",
|
125 |
+
title=" ",
|
126 |
+
description=(
|
127 |
+
"Transcribe recorded or audio files with the click of a button."
|
128 |
+
),
|
129 |
+
allow_flagging="never",
|
130 |
+
)
|
131 |
+
|
132 |
+
yt_transcribe = gr.Interface(
|
133 |
+
fn=yt_transcribe,
|
134 |
+
inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste your YouTube video URL here", label="YouTube Video URL")],
|
135 |
+
outputs=["html", "text"],
|
136 |
+
layout="horizontal",
|
137 |
+
theme="huggingface",
|
138 |
+
title=" ",
|
139 |
+
description=(
|
140 |
+
"Transcribe YouTube videos at the click of a button."
|
141 |
+
|
142 |
+
),
|
143 |
+
allow_flagging="never",
|
144 |
+
)
|
145 |
+
|
146 |
+
clp = gr.TabbedInterface([A1, mf_transcribe, yt_transcribe, A2, A3], ["Chat", "Transcribe Audio", "Transcribe YouTube Videos", "Describe", "Create"], theme= gr.themes.Glass(primary_hue="neutral", neutral_hue="slate"))
|
147 |
+
clp.queue().launch()
|