Pclanglais's picture
Update app.py
4fa44c7 verified
raw
history blame
6.14 kB
import transformers
import re
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM, pipeline
import torch
import gradio as gr
import json
import os
import shutil
import requests
import pandas as pd
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
editorial_model = "PleIAs/Estienne"
token_classifier = pipeline(
"token-classification", model=editorial_model, aggregation_strategy="simple", device=device
)
tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512)
css = """
<style>
.manuscript {
display: flex;
margin-bottom: 10px;
align-items: baseline;
}
.annotation {
width: 20%;
padding-right: 10px;
color: grey !important;
font-style: italic;
text-align: right;
}
.content {
width: 80%;
}
h2 {
margin: 0;
font-size: 1.5em;
}
.title-content h2 {
font-weight: bold;
}
.bibliography-content {
color:darkgreen !important;
margin-top: -5px; /* Adjust if needed to align with annotation */
}
</style>
"""
# Preprocess the 'word' column
def preprocess_text(text):
# Remove HTML tags
text = re.sub(r'<[^>]+>', '', text)
# Replace newlines with spaces
text = re.sub(r'\n', ' ', text)
# Replace multiple spaces with a single space
text = re.sub(r'\s+', ' ', text)
# Strip leading and trailing whitespace
return text.strip()
def split_text(text, max_tokens=500):
# Split the text by newline characters
parts = text.split("\n")
chunks = []
current_chunk = ""
for part in parts:
# Add part to current chunk
if current_chunk:
temp_chunk = current_chunk + "\n" + part
else:
temp_chunk = part
# Tokenize the temporary chunk
num_tokens = len(tokenizer.tokenize(temp_chunk))
if num_tokens <= max_tokens:
current_chunk = temp_chunk
else:
if current_chunk:
chunks.append(current_chunk)
current_chunk = part
if current_chunk:
chunks.append(current_chunk)
# If no newlines were found and still exceeding max_tokens, split further
if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
long_text = chunks[0]
chunks = []
while len(tokenizer.tokenize(long_text)) > max_tokens:
split_point = len(long_text) // 2
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
split_point += 1
# Ensure split_point does not go out of range
if split_point >= len(long_text):
split_point = len(long_text) - 1
chunks.append(long_text[:split_point].strip())
long_text = long_text[split_point:].strip()
if long_text:
chunks.append(long_text)
return chunks
def transform_chunks(marianne_segmentation):
marianne_segmentation = pd.DataFrame(marianne_segmentation)
marianne_segmentation = marianne_segmentation[marianne_segmentation['entity_group'] != 'separator']
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).str.replace('¶', '\n', regex=False)
marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).apply(preprocess_text)
marianne_segmentation = marianne_segmentation[marianne_segmentation['word'].notna() & (marianne_segmentation['word'] != '') & (marianne_segmentation['word'] != ' ')]
html_output = []
for _, row in marianne_segmentation.iterrows():
entity_group = row['entity_group']
result_entity = "[" + entity_group.capitalize() + "]"
word = row['word']
if entity_group == 'title':
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content title-content"><h2>{word}</h2></div></div>')
elif entity_group == 'bibliography':
html_output.append(f'<div class="manuscript"><div class="annotation">[{annotation}]</div><div class="content bibliography-content">{word}</div></div>')
else:
html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content">{word}</div></div>')
final_html = '\n'.join(html_output)
return final_html
# Class to encapsulate the Falcon chatbot
class MistralChatBot:
def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
self.system_prompt = system_prompt
def predict(self, user_message):
editorial_text = re.sub("\n", " ¶ ", user_message)
num_tokens = len(tokenizer.tokenize(editorial_text))
if num_tokens > 500:
batch_prompts = split_text(editorial_text, max_tokens=500)
else:
batch_prompts = [editorial_text]
out = token_classifier(batch_prompts)
classified_list = []
for classification in out:
df = pd.DataFrame(classification)
classified_list.append(df)
classified_list = pd.concat(classified_list)
out = transform_chunks(classified_list)
generated_text = f'{css}<h2 style="text-align:center">Réponse</h2>\n<div class="generation">{out}</div>'
return generated_text
# Create the Falcon chatbot instance
mistral_bot = MistralChatBot()
# Define the Gradio interface
title = "Éditorialisation"
description = "Un outil expérimental d'identification de la structure du texte à partir d'un encoder (Deberta)"
examples = [
[
"Qui peut bénéficier de l'AIP?", # user_message
0.7 # temperature
]
]
demo = gr.Blocks()
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
gr.HTML("""<h1 style="text-align:center">Correction d'OCR</h1>""")
text_input = gr.Textbox(label="Votre texte.", type="text", lines=1)
text_button = gr.Button("Identifier les structures éditoriales")
text_output = gr.HTML(label="Le texte corrigé")
text_button.click(mistral_bot.predict, inputs=text_input, outputs=[text_output])
if __name__ == "__main__":
demo.queue().launch()