Spaces:
Sleeping
Sleeping
Update app/main.py
Browse files- app/main.py +9 -4
app/main.py
CHANGED
@@ -11,13 +11,13 @@ from enum import Enum
|
|
11 |
from typing import Optional
|
12 |
|
13 |
print("Loading model...")
|
14 |
-
SAllm = Llama(model_path="/models/final-gemma2b_SA-Q8_0.gguf")
|
15 |
# n_gpu_layers=28, # Uncomment to use GPU acceleration
|
16 |
# seed=1337, # Uncomment to set a specific seed
|
17 |
# n_ctx=2048, # Uncomment to increase the context window
|
18 |
#)
|
19 |
|
20 |
-
|
21 |
|
22 |
# def ask(question, max_new_tokens=200):
|
23 |
# output = llm(
|
@@ -32,6 +32,11 @@ SAllm = Llama(model_path="/models/final-gemma2b_SA-Q8_0.gguf")#,
|
|
32 |
def extract_restext(response):
|
33 |
return response['choices'][0]['text'].strip()
|
34 |
|
|
|
|
|
|
|
|
|
|
|
35 |
def check_sentiment(text):
|
36 |
prompt = f'Analyze the sentiment of the tweet enclosed in square brackets, determine if it is positive or negative, and return the answer as the corresponding sentiment label "positive" or "negative" [{text}] ='
|
37 |
response = SAllm(prompt, max_tokens=3, stop=["\n"], echo=False, temperature=0.5)
|
@@ -47,6 +52,7 @@ def check_sentiment(text):
|
|
47 |
|
48 |
print("Testing model...")
|
49 |
assert "positive" in check_sentiment("ดอกไม้ร้านนี้สวยจัง")
|
|
|
50 |
print("Ready.")
|
51 |
|
52 |
app = FastAPI(
|
@@ -117,8 +123,7 @@ def ask_gemmaFinanceTH(
|
|
117 |
if prompt:
|
118 |
try:
|
119 |
print(f'Asking FI with the question "{prompt}"')
|
120 |
-
prompt =
|
121 |
-
result = extract_restext(FIllm(prompt, max_tokens=max_new_tokens, temperature=temperature, stop=["###User:", "###Assistant:"], echo=False))
|
122 |
print(f"Result: {result}")
|
123 |
return FI_Response(answer=result, question=prompt, config={"temperature": temperature, "max_new_tokens": max_new_tokens})
|
124 |
except Exception as e:
|
|
|
11 |
from typing import Optional
|
12 |
|
13 |
print("Loading model...")
|
14 |
+
SAllm = Llama(model_path="/models/final-gemma2b_SA-Q8_0.gguf", mmap=False, mlock=True)
|
15 |
# n_gpu_layers=28, # Uncomment to use GPU acceleration
|
16 |
# seed=1337, # Uncomment to set a specific seed
|
17 |
# n_ctx=2048, # Uncomment to increase the context window
|
18 |
#)
|
19 |
|
20 |
+
FIllm = Llama(model_path="/models/final-gemma7b_FI-Q8_0.gguf", mmap=False, mlock=True)
|
21 |
|
22 |
# def ask(question, max_new_tokens=200):
|
23 |
# output = llm(
|
|
|
32 |
def extract_restext(response):
|
33 |
return response['choices'][0]['text'].strip()
|
34 |
|
35 |
+
def ask_fi(question, max_new_tokens=200, temperature=0.5):
|
36 |
+
prompt = f"""###User: {question}\n###Assistant:"""
|
37 |
+
result = extract_restext(FIllm(prompt, max_tokens=max_new_tokens, temperature=temperature, stop=["###User:", "###Assistant:"], echo=False))
|
38 |
+
return result
|
39 |
+
|
40 |
def check_sentiment(text):
|
41 |
prompt = f'Analyze the sentiment of the tweet enclosed in square brackets, determine if it is positive or negative, and return the answer as the corresponding sentiment label "positive" or "negative" [{text}] ='
|
42 |
response = SAllm(prompt, max_tokens=3, stop=["\n"], echo=False, temperature=0.5)
|
|
|
52 |
|
53 |
print("Testing model...")
|
54 |
assert "positive" in check_sentiment("ดอกไม้ร้านนี้สวยจัง")
|
55 |
+
assert ask_fi("Hello!, How are you today?")
|
56 |
print("Ready.")
|
57 |
|
58 |
app = FastAPI(
|
|
|
123 |
if prompt:
|
124 |
try:
|
125 |
print(f'Asking FI with the question "{prompt}"')
|
126 |
+
result = ask_fi(prompt, max_new_tokens=max_new_tokens, temperature=temperature)
|
|
|
127 |
print(f"Result: {result}")
|
128 |
return FI_Response(answer=result, question=prompt, config={"temperature": temperature, "max_new_tokens": max_new_tokens})
|
129 |
except Exception as e:
|