Spaces:
Runtime error
Runtime error
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
# import gradio as gr | |
# from faster_whisper import WhisperModel | |
# # Try to load the model on startup | |
# try: | |
# model = WhisperModel("medium", device="cpu", compute_type="int8") | |
# except Exception as e: | |
# # You could log the error or handle it more gracefully if needed | |
# model = None | |
# model_error = f"Failed to load model: {e}" | |
# def transcribe(audio_file): | |
# if model is None: | |
# return model_error | |
# try: | |
# segments, info = model.transcribe(audio_file.name, beam_size=5) | |
# text = " ".join([seg.text for seg in segments]) | |
# return text | |
# except Exception as e: | |
# return f"Transcription failed: {e}" | |
# iface = gr.Interface( | |
# fn=transcribe, | |
# inputs=gr.Audio(sources=["upload"], type="filepath", label="Audio file"), | |
# outputs="text", | |
# title="Faster Whisper Transcription API", | |
# description="Upload audio and get transcription text." | |
# ) | |
# iface.launch(server_name="0.0.0.0", server_port=7860) | |
import gradio as gr | |
from faster_whisper import WhisperModel | |
# Try to load the model on startup | |
try: | |
model = WhisperModel("medium", device="cpu", compute_type="int8") | |
except Exception as e: | |
model = None | |
model_error = f"Failed to load model: {e}" | |
def transcribe(audio_file): | |
if model is None: | |
return model_error | |
try: | |
segments, info = model.transcribe(audio_file, beam_size=5) | |
text = " ".join([seg.text for seg in segments]) | |
return text | |
except Exception as e: | |
return f"Transcription failed: {e}" | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(sources=["upload"], type="filepath", label="Audio file"), | |
outputs="text", | |
title="Faster Whisper Transcription API", | |
description="Upload audio and get transcription text." | |
) | |
iface.launch(server_name="0.0.0.0", server_port=7880) | |