Spaces:
Sleeping
Sleeping
added to update
Browse files
app.py
CHANGED
|
@@ -1,64 +1,33 @@
|
|
| 1 |
-
import
|
| 2 |
-
from huggingface_hub import InferenceClient
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
if val[0]:
|
| 22 |
-
messages.append({"role": "user", "content": val[0]})
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
|
| 26 |
-
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
messages,
|
| 32 |
-
max_tokens=max_tokens,
|
| 33 |
-
stream=True,
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
""
|
| 44 |
-
|
| 45 |
-
"""
|
| 46 |
-
demo = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
if __name__ == "__main__":
|
| 64 |
-
demo.launch()
|
|
|
|
| 1 |
+
import streamlit as st
|
|
|
|
| 2 |
|
| 3 |
+
# Set page config FIRST — must be the first Streamlit command
|
| 4 |
+
st.set_page_config(page_title="BERT QA", layout="wide")
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
from transformers import pipeline
|
| 7 |
|
| 8 |
+
# Load QA pipeline with BERT model
|
| 9 |
+
@st.cache_resource
|
| 10 |
+
def load_qa_pipeline():
|
| 11 |
+
model_name = "deepset/bert-large-uncased-whole-word-masking-squad2"
|
| 12 |
+
return pipeline("question-answering", model=model_name, tokenizer=model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
nlp = load_qa_pipeline()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# Streamlit UI
|
| 17 |
+
st.title("🤖 BERT-based Q&A using HuggingFace")
|
| 18 |
|
| 19 |
+
context = st.text_area("📄 Enter Context", height=200, value="""
|
| 20 |
+
Trainer: Jai Ganesh S;
|
| 21 |
+
Session 1: Intro about Arenas & LLMs;
|
| 22 |
+
Session 2: Hands-on on LLMs
|
| 23 |
+
Session 3: LangChain - Intro
|
| 24 |
+
""")
|
| 25 |
|
| 26 |
+
question = st.text_input("❓ Ask a Question", value="What's the session 1?")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
if st.button("Get Answer"):
|
| 29 |
+
with st.spinner("Thinking..."):
|
| 30 |
+
QA_input = {"question": question, "context": context}
|
| 31 |
+
result = nlp(QA_input)
|
| 32 |
+
st.success(f"🧠 **Answer**: {result['answer']}")
|
| 33 |
+
st.caption(f"Score: {result['score']:.2f} | Start: {result['start']}, End: {result['end']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|