Spaces:
Runtime error
Runtime error
Pavankalyan
commited on
Commit
•
6afc25f
1
Parent(s):
a93df0f
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from model import Wav2VecModel
|
3 |
+
from dataset import S2IDataset, collate_fn
|
4 |
+
import requests
|
5 |
+
requests.packages.urllib3.disable_warnings()
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torchaudio
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import pytorch_lightning as pl
|
12 |
+
|
13 |
+
from pytorch_lightning import Trainer
|
14 |
+
from pytorch_lightning.callbacks import ModelCheckpoint
|
15 |
+
from pytorch_lightning.loggers import WandbLogger
|
16 |
+
|
17 |
+
# SEED
|
18 |
+
SEED=100
|
19 |
+
pl.utilities.seed.seed_everything(SEED)
|
20 |
+
torch.manual_seed(SEED)
|
21 |
+
|
22 |
+
import os
|
23 |
+
os.environ['WANDB_MODE'] = 'online'
|
24 |
+
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
|
25 |
+
os.environ["CUDA_VISIBLE_DEVICES"]="1"
|
26 |
+
|
27 |
+
class LightningModel(pl.LightningModule):
|
28 |
+
def __init__(self,):
|
29 |
+
super().__init__()
|
30 |
+
self.model = Wav2VecModel()
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
return self.model(x)
|
34 |
+
|
35 |
+
def configure_optimizers(self):
|
36 |
+
optimizer = torch.optim.Adam(self.parameters(), lr=1e-5)
|
37 |
+
return [optimizer]
|
38 |
+
|
39 |
+
def loss_fn(self, prediction, targets):
|
40 |
+
return nn.CrossEntropyLoss()(prediction, targets)
|
41 |
+
|
42 |
+
def training_step(self, batch, batch_idx):
|
43 |
+
x, y = batch
|
44 |
+
y = y.view(-1)
|
45 |
+
|
46 |
+
logits = self(x)
|
47 |
+
probs = F.softmax(logits, dim=1)
|
48 |
+
loss = self.loss_fn(logits, y)
|
49 |
+
|
50 |
+
winners = logits.argmax(dim=1)
|
51 |
+
corrects = (winners == y)
|
52 |
+
acc = corrects.sum().float()/float(logits.size(0))
|
53 |
+
|
54 |
+
self.log('train/loss', loss, on_step=False, on_epoch=True, prog_bar=True)
|
55 |
+
self.log('train/acc', acc, on_step=False, on_epoch=True, prog_bar=True)
|
56 |
+
torch.cuda.empty_cache()
|
57 |
+
return {
|
58 |
+
'loss':loss,
|
59 |
+
'acc':acc
|
60 |
+
}
|
61 |
+
|
62 |
+
def validation_step(self, batch, batch_idx):
|
63 |
+
x, y = batch
|
64 |
+
y = y.view(-1)
|
65 |
+
|
66 |
+
logits = self(x)
|
67 |
+
loss = self.loss_fn(logits, y)
|
68 |
+
|
69 |
+
winners = logits.argmax(dim=1)
|
70 |
+
corrects = (winners == y)
|
71 |
+
acc = corrects.sum().float() / float( logits.size(0))
|
72 |
+
|
73 |
+
self.log('val/loss' , loss, on_step=False, on_epoch=True, prog_bar=True)
|
74 |
+
self.log('val/acc',acc, on_step=False, on_epoch=True, prog_bar=True)
|
75 |
+
|
76 |
+
return {'val_loss':loss,
|
77 |
+
'val_acc':acc,
|
78 |
+
}
|
79 |
+
|
80 |
+
def test_step(self, batch, batch_idx):
|
81 |
+
x, y = batch
|
82 |
+
y = y.view(-1)
|
83 |
+
|
84 |
+
logits = self(x)
|
85 |
+
loss = self.loss_fn(logits, y)
|
86 |
+
|
87 |
+
winners = logits.argmax(dim=1)
|
88 |
+
corrects = (winners == y)
|
89 |
+
acc = corrects.sum().float() / float( logits.size(0))
|
90 |
+
|
91 |
+
self.log('val/loss' , loss, on_step=False, on_epoch=True, prog_bar=True)
|
92 |
+
self.log('val/acc',acc, on_step=False, on_epoch=True, prog_bar=True)
|
93 |
+
|
94 |
+
return {'val_loss':loss,
|
95 |
+
'val_acc':acc,
|
96 |
+
}
|
97 |
+
|
98 |
+
def predict(self, wav):
|
99 |
+
self.eval()
|
100 |
+
with torch.no_grad():
|
101 |
+
output = self.forward(wav)
|
102 |
+
predicted_class = torch.argmax(output, dim=1)
|
103 |
+
return predicted_class
|
104 |
+
|
105 |
+
if __name__ == "__main__":
|
106 |
+
|
107 |
+
dataset = S2IDataset(
|
108 |
+
csv_path="./speech-to-intent/train.csv",
|
109 |
+
wav_dir_path="/home/development/pavan/Telesoft/speech-to-intent-dataset/baselines/speech-to-intent"
|
110 |
+
)
|
111 |
+
|
112 |
+
test_dataset = S2IDataset(
|
113 |
+
csv_path="./speech-to-intent/test.csv",
|
114 |
+
wav_dir_path="/home/development/pavan/Telesoft/speech-to-intent-dataset/baselines/speech-to-intent"
|
115 |
+
)
|
116 |
+
|
117 |
+
train_len = int(len(dataset) * 0.90)
|
118 |
+
val_len = len(dataset) - train_len
|
119 |
+
print(train_len, val_len)
|
120 |
+
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_len, val_len], generator=torch.Generator().manual_seed(SEED))
|
121 |
+
print(len(test_dataset))
|
122 |
+
|
123 |
+
trainloader = torch.utils.data.DataLoader(
|
124 |
+
train_dataset,
|
125 |
+
batch_size=4,
|
126 |
+
shuffle=True,
|
127 |
+
num_workers=4,
|
128 |
+
collate_fn = collate_fn,
|
129 |
+
)
|
130 |
+
|
131 |
+
valloader = torch.utils.data.DataLoader(
|
132 |
+
val_dataset,
|
133 |
+
batch_size=4,
|
134 |
+
num_workers=4,
|
135 |
+
collate_fn = collate_fn,
|
136 |
+
)
|
137 |
+
|
138 |
+
testloader = torch.utils.data.DataLoader(
|
139 |
+
test_dataset,
|
140 |
+
#batch_size=4,
|
141 |
+
num_workers=4,
|
142 |
+
collate_fn = collate_fn,
|
143 |
+
)
|
144 |
+
|
145 |
+
print(torch.cuda.mem_get_info())
|
146 |
+
|
147 |
+
model = LightningModel()
|
148 |
+
|
149 |
+
run_name = "wav2vec"
|
150 |
+
logger = WandbLogger(
|
151 |
+
name=run_name,
|
152 |
+
project='S2I-baseline'
|
153 |
+
)
|
154 |
+
|
155 |
+
model_checkpoint_callback = ModelCheckpoint(
|
156 |
+
dirpath='checkpoints',
|
157 |
+
monitor='val/acc',
|
158 |
+
mode='max',
|
159 |
+
verbose=1,
|
160 |
+
filename=run_name + "-epoch={epoch}.ckpt")
|
161 |
+
|
162 |
+
trainer = Trainer(
|
163 |
+
fast_dev_run=False,
|
164 |
+
gpus=1,
|
165 |
+
max_epochs=5,
|
166 |
+
checkpoint_callback=True,
|
167 |
+
callbacks=[
|
168 |
+
model_checkpoint_callback,
|
169 |
+
],
|
170 |
+
logger=logger,
|
171 |
+
)
|
172 |
+
checkpoint_path = "./checkpoints/wav2vec-epoch=epoch=4.ckpt.ckpt"
|
173 |
+
checkpoint = torch.load(checkpoint_path)
|
174 |
+
model.load_state_dict(checkpoint['state_dict'])
|
175 |
+
trainer = Trainer(
|
176 |
+
gpus=1
|
177 |
+
)
|
178 |
+
|
179 |
+
#trainer.fit(model, train_dataloader=trainloader, val_dataloaders=valloader)
|
180 |
+
#trainer.test(model,dataloaders=testloader,verbose=True)
|
181 |
+
wav_path = "./speech-to-intent/wav_audios/92145547-3ab6-44e0-9245-085642fc4318.wav"
|
182 |
+
resmaple = torchaudio.transforms.Resample(8000, 16000)
|
183 |
+
wav_tensor,_ = torchaudio.load(wav_path)
|
184 |
+
wav_tensor = resmaple(wav_tensor)
|
185 |
+
model = model.to('cuda')
|
186 |
+
y_hat = model.predict(wav_tensor)
|
187 |
+
#with torch.no_grad():
|
188 |
+
# y_hat = model(wav_tensor)
|
189 |
+
|
190 |
+
print(y_hat)
|
191 |
+
|
192 |
+
|