Pavankalyan commited on
Commit
4e12acb
1 Parent(s): ddb6e98

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -16
app.py CHANGED
@@ -1,25 +1,19 @@
1
  import gradio as gr
2
  import pandas as pd
3
- from retrieval import *
4
  import os
5
- from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
6
 
7
- model_name = "deepset/deberta-v3-large-squad2"
8
 
9
- # a) Get predictions
10
- nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
11
 
12
 
13
 
14
  hf_writer = gr.HuggingFaceDatasetSaver('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', "Pavankalyan/chitti_data")
15
 
16
- df = pd.read_csv("Responses.csv")
17
- text = list(df["text"].values)
18
-
19
 
20
  def chitti(query):
21
- re_table = search(query, text)
22
  answers_re_table = [re_table[i][0] for i in range(0,5)]
 
23
  sorted_indices = sorted(range(len(answers_re_table)), key=lambda k: len(answers_re_table[k]))
24
  repeated_answers_indices =list()
25
  for i in range(4):
@@ -27,19 +21,15 @@ def chitti(query):
27
  repeated_answers_indices.append(sorted_indices[i])
28
  for idx in repeated_answers_indices:
29
  answers_re_table.pop(idx)
 
30
 
31
- QA_input = {'question': query,'context': answers_re_table[0]}
32
- res1 = nlp(QA_input)['answer']
33
- QA_input = {'question': query,'context': answers_re_table[1]}
34
- res2 = nlp(QA_input)['answer']
35
  #return [res1,answers_re_table[0],res2,answers_re_table[1]]
36
- return [answers_re_table[0],answers_re_table[1]]
37
 
38
  demo = gr.Interface(
39
  fn=chitti,
40
  inputs=["text"],
41
- #outputs=["text","text","text","text"],
42
- outputs=["text","text"],
43
  allow_flagging = "manual",
44
  flagging_options = ["0","1","None"],
45
  flagging_callback=hf_writer
 
1
  import gradio as gr
2
  import pandas as pd
3
+ from load_data import *
4
  import os
 
5
 
 
6
 
 
 
7
 
8
 
9
 
10
  hf_writer = gr.HuggingFaceDatasetSaver('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', "Pavankalyan/chitti_data")
11
 
 
 
 
12
 
13
  def chitti(query):
14
+ re_table = search(query)
15
  answers_re_table = [re_table[i][0] for i in range(0,5)]
16
+ answer_links = [re_table[i][3] for i in range(0,5)]
17
  sorted_indices = sorted(range(len(answers_re_table)), key=lambda k: len(answers_re_table[k]))
18
  repeated_answers_indices =list()
19
  for i in range(4):
 
21
  repeated_answers_indices.append(sorted_indices[i])
22
  for idx in repeated_answers_indices:
23
  answers_re_table.pop(idx)
24
+ answer_links.pop(idx)
25
 
 
 
 
 
26
  #return [res1,answers_re_table[0],res2,answers_re_table[1]]
27
+ return [answers_re_table[0],answers_links[0],answers_re_table[1],answer_links[1]]
28
 
29
  demo = gr.Interface(
30
  fn=chitti,
31
  inputs=["text"],
32
+ outputs=["text","text","text","text"],
 
33
  allow_flagging = "manual",
34
  flagging_options = ["0","1","None"],
35
  flagging_callback=hf_writer