Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pdfplumber
|
3 |
+
import re
|
4 |
+
import tempfile
|
5 |
+
import os
|
6 |
+
import torch
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
8 |
+
from concurrent.futures import ThreadPoolExecutor
|
9 |
+
import spaces
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
@spaces.GPU
|
14 |
+
def preprocess_text_for_tts(text):
|
15 |
+
text = re.sub(r'[^\x20-\x7E]', ' ', text)
|
16 |
+
text = re.sub(r'http\S+|www\S+|https\S+', '', text, flags=re.MULTILINE)
|
17 |
+
text = re.sub(r'\S+@\S+', '', text)
|
18 |
+
text = re.sub(r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b', '', text)
|
19 |
+
text = re.sub(r'\.{2,}', ' ', text)
|
20 |
+
|
21 |
+
def convert_case(match):
|
22 |
+
word = match.group(0)
|
23 |
+
common_abbreviations = {'AI', 'ML', 'NLP', 'CV', 'API', 'GPU', 'CPU', 'RAM', 'ROM', 'USA', 'UK', 'EU'}
|
24 |
+
return word if word in common_abbreviations else word.title()
|
25 |
+
|
26 |
+
text = re.sub(r'\b[A-Z]+\b', convert_case, text)
|
27 |
+
text = re.sub(r'\s+', ' ', text)
|
28 |
+
text = re.sub(r'\.([A-Za-z])', r'. \1', text)
|
29 |
+
text = re.sub(r'([a-z])([A-Z])', r'\1. \2', text)
|
30 |
+
text = re.sub(r'([A-Za-z])\s([.,!?])', r'\1\2', text)
|
31 |
+
text = re.sub(r'([.,!?])([A-Za-z])', r'\1 \2', text)
|
32 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
33 |
+
|
34 |
+
return text
|
35 |
+
|
36 |
+
# Check if CUDA (GPU) is available
|
37 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
+
print(f"Using device: {device}")
|
39 |
+
|
40 |
+
# Load the model and tokenizer
|
41 |
+
model_name = "sherif31/T5-Grammer-Correction" # Replace with your actual model name
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
43 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
|
44 |
+
|
45 |
+
|
46 |
+
def correct_text(text):
|
47 |
+
# Split the text into chunks to avoid exceeding max token limit
|
48 |
+
max_chunk_length = 512
|
49 |
+
chunks = [text[i:i+max_chunk_length] for i in range(0, len(text), max_chunk_length)]
|
50 |
+
corrected_chunks = []
|
51 |
+
|
52 |
+
for chunk in chunks:
|
53 |
+
input_text = f"grammar: {chunk}"
|
54 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True).to(device)
|
55 |
+
|
56 |
+
with torch.no_grad():
|
57 |
+
output = model.generate(input_ids, max_length=512, num_return_sequences=1, num_beams=5)
|
58 |
+
|
59 |
+
corrected_chunk = tokenizer.decode(output[0], skip_special_tokens=True)
|
60 |
+
corrected_chunks.append(corrected_chunk)
|
61 |
+
|
62 |
+
return ' '.join(corrected_chunks)
|
63 |
+
|
64 |
+
def extract_text_from_pages(pdf_bytes):
|
65 |
+
page_text_dict = {}
|
66 |
+
|
67 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
|
68 |
+
temp_pdf.write(pdf_bytes)
|
69 |
+
temp_pdf_path = temp_pdf.name
|
70 |
+
|
71 |
+
try:
|
72 |
+
with pdfplumber.open(temp_pdf_path) as pdf:
|
73 |
+
for page_num, page in enumerate(pdf.pages, 1):
|
74 |
+
raw_text = page.extract_text()
|
75 |
+
if raw_text:
|
76 |
+
cleaned_text = preprocess_text_for_tts(raw_text)
|
77 |
+
corrected_text = correct_text(cleaned_text)
|
78 |
+
page_text_dict[page_num] = corrected_text
|
79 |
+
else:
|
80 |
+
page_text_dict[page_num] = ""
|
81 |
+
finally:
|
82 |
+
os.unlink(temp_pdf_path)
|
83 |
+
|
84 |
+
return page_text_dict
|
85 |
+
|
86 |
+
def process_pdf(pdf_file):
|
87 |
+
if pdf_file is None:
|
88 |
+
return "No file uploaded. Please upload a PDF file."
|
89 |
+
|
90 |
+
result = extract_text_from_pages(pdf_file)
|
91 |
+
|
92 |
+
# Use ThreadPoolExecutor for parallel processing
|
93 |
+
with ThreadPoolExecutor() as executor:
|
94 |
+
corrected_texts = list(executor.map(correct_text, result.values()))
|
95 |
+
|
96 |
+
# Combine the results
|
97 |
+
output = ""
|
98 |
+
for page_num, text in zip(result.keys(), corrected_texts):
|
99 |
+
output += f"Page {page_num}:\n{text}\n\n"
|
100 |
+
|
101 |
+
return output
|
102 |
+
|
103 |
+
# Create the Gradio interface
|
104 |
+
iface = gr.Interface(
|
105 |
+
fn=process_pdf,
|
106 |
+
inputs=gr.File(label="Upload PDF", type="binary"),
|
107 |
+
outputs=gr.Textbox(label="Extracted and Processed Text"),
|
108 |
+
title="PDF Text Extractor and Processor",
|
109 |
+
description="Upload a PDF file to extract, clean, and correct its text content."
|
110 |
+
)
|
111 |
+
|
112 |
+
# Launch the app
|
113 |
+
iface.launch()
|