Pavan178 commited on
Commit
b08a974
·
verified ·
1 Parent(s): a1d54f6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +246 -138
app.py CHANGED
@@ -1,167 +1,253 @@
1
  import gradio as gr
2
  import os
3
- from huggingface_hub import login
4
- import torch
5
- from transformers import AutoTokenizer, AutoModelForCausalLM
6
- import transformers
7
  from langchain_community.document_loaders import PyPDFLoader
8
  from langchain.text_splitter import RecursiveCharacterTextSplitter
9
  from langchain_community.vectorstores import Chroma
10
  from langchain.chains import ConversationalRetrievalChain
11
  from langchain_community.embeddings import HuggingFaceEmbeddings
12
  from langchain_community.llms import HuggingFacePipeline
 
13
  from langchain.memory import ConversationBufferMemory
 
14
  import spaces
15
  from pathlib import Path
16
  import chromadb
17
  from unidecode import unidecode
18
- import re
19
 
20
- # Global variables
21
- global_llm = None
22
- global_tokenizer = None
23
- hf_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
 
 
24
 
25
- if not hf_token:
26
- raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
27
 
28
- # Log in to Hugging Face
29
- login(token=hf_token)
30
 
31
- list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1"]
 
 
 
 
 
 
 
32
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
33
 
34
  @spaces.GPU
 
35
  def load_doc(list_file_path, chunk_size, chunk_overlap):
 
 
 
36
  loaders = [PyPDFLoader(x) for x in list_file_path]
37
  pages = []
38
  for loader in loaders:
39
  pages.extend(loader.load())
 
40
  text_splitter = RecursiveCharacterTextSplitter(
41
- chunk_size=chunk_size,
42
- chunk_overlap=chunk_overlap)
43
  doc_splits = text_splitter.split_documents(pages)
44
  return doc_splits
45
 
 
 
46
  def create_db(splits, collection_name):
47
- if torch.cuda.is_available():
48
- os.environ["CUDA_VISIBLE_DEVICES"] = "0"
49
-
50
- embedding = HuggingFaceEmbeddings(
51
- model_name="sentence-transformers/all-MiniLM-L6-v2",
52
- model_kwargs={"use_auth_token": hf_token}
53
- )
54
  new_client = chromadb.EphemeralClient()
55
  vectordb = Chroma.from_documents(
56
  documents=splits,
57
  embedding=embedding,
58
  client=new_client,
59
  collection_name=collection_name,
 
60
  )
61
  return vectordb
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  def create_collection_name(filepath):
 
64
  collection_name = Path(filepath).stem
65
- collection_name = collection_name.replace(" ", "-")
 
 
 
66
  collection_name = unidecode(collection_name)
 
 
67
  collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
 
68
  collection_name = collection_name[:50]
 
69
  if len(collection_name) < 3:
70
  collection_name = collection_name + 'xyz'
 
71
  if not collection_name[0].isalnum():
72
  collection_name = 'A' + collection_name[1:]
73
  if not collection_name[-1].isalnum():
74
  collection_name = collection_name[:-1] + 'Z'
 
 
75
  return collection_name
76
 
77
- def initialize_global_llm(llm_model, temperature, max_tokens, top_k, progress=gr.Progress()):
78
- global global_llm, global_tokenizer
79
-
80
- if global_llm is None:
81
- progress(0.1, desc="Initializing HF tokenizer...")
82
- global_tokenizer = AutoTokenizer.from_pretrained(llm_model, use_auth_token=hf_token)
83
-
84
- progress(0.3, desc="Loading model...")
85
- try:
86
- model = AutoModelForCausalLM.from_pretrained(
87
- llm_model,
88
- use_auth_token=hf_token,
89
- torch_dtype=torch.float16,
90
- device_map="auto"
91
- )
92
- except RuntimeError as e:
93
- if "CUDA out of memory" in str(e):
94
- raise gr.Error("GPU memory exceeded. Try a smaller model or reduce batch size.")
95
- else:
96
- raise e
97
-
98
- progress(0.5, desc="Initializing HF pipeline...")
99
- pipeline = transformers.pipeline(
100
- "text-generation",
101
- model=model,
102
- tokenizer=global_tokenizer,
103
- torch_dtype=torch.float16,
104
- device_map="auto",
105
- max_new_tokens=max_tokens,
106
- do_sample=True,
107
- top_k=top_k,
108
- num_return_sequences=1,
109
- eos_token_id=global_tokenizer.eos_token_id
110
- )
111
- global_llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
112
-
113
- progress(0.9, desc="LLM initialization complete!")
114
- return "LLM initialized successfully!"
115
- else:
116
- progress(0.9, desc="Using previously initialized LLM.")
117
- return "Using previously initialized LLM."
118
 
 
119
  def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
120
- if list_file_obj is None or len(list_file_obj) == 0:
121
- return None, None, "Error: No files uploaded. Please upload PDF files first."
122
-
123
  list_file_path = [x.name for x in list_file_obj if x is not None]
124
- if not list_file_path:
125
- return None, None, "Error: No valid files found. Please upload PDF files."
126
-
127
  progress(0.1, desc="Creating collection name...")
128
  collection_name = create_collection_name(list_file_path[0])
129
  progress(0.25, desc="Loading document...")
 
130
  doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
 
131
  progress(0.5, desc="Generating vector database...")
 
132
  vector_db = create_db(doc_splits, collection_name)
133
  progress(0.9, desc="Done!")
134
  return vector_db, collection_name, "Complete!"
135
 
 
136
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
 
137
  llm_name = list_llm[llm_option]
138
- global_llm = initialize_global_llm(llm_name, llm_temperature, max_tokens, top_k, progress)
139
-
140
- memory = ConversationBufferMemory(
141
- memory_key="chat_history",
142
- output_key='answer',
143
- return_messages=True
144
- )
145
- retriever = vector_db.as_retriever()
146
- qa_chain = ConversationalRetrievalChain.from_llm(
147
- global_llm,
148
- retriever=retriever,
149
- chain_type="stuff",
150
- memory=memory,
151
- return_source_documents=True,
152
- verbose=False,
153
- )
154
  return qa_chain, "Complete!"
155
 
 
156
  def format_chat_history(message, chat_history):
157
  formatted_chat_history = []
158
  for user_message, bot_message in chat_history:
159
  formatted_chat_history.append(f"User: {user_message}")
160
  formatted_chat_history.append(f"Assistant: {bot_message}")
161
  return formatted_chat_history
 
162
 
163
  def conversation(qa_chain, message, history):
164
  formatted_chat_history = format_chat_history(message, history)
 
 
 
165
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
166
  response_answer = response["answer"]
167
  if response_answer.find("Helpful Answer:") != -1:
@@ -170,12 +256,28 @@ def conversation(qa_chain, message, history):
170
  response_source1 = response_sources[0].page_content.strip()
171
  response_source2 = response_sources[1].page_content.strip()
172
  response_source3 = response_sources[2].page_content.strip()
 
173
  response_source1_page = response_sources[0].metadata["page"] + 1
174
  response_source2_page = response_sources[1].metadata["page"] + 1
175
  response_source3_page = response_sources[2].metadata["page"] + 1
 
 
176
 
 
177
  new_history = history + [(message, response_answer)]
 
178
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
 
 
 
 
 
 
 
 
 
 
 
179
 
180
  def demo():
181
  with gr.Blocks(theme="base") as demo:
@@ -184,38 +286,50 @@ def demo():
184
  collection_name = gr.State()
185
 
186
  gr.Markdown(
187
- """<center><h2>GPU-Accelerated PDF-based Chatbot</center></h2>
188
  <h3>Ask any questions about your PDF documents</h3>""")
189
  gr.Markdown(
190
- """<b>Note:</b> This AI assistant uses GPU acceleration for faster processing.
191
- It performs retrieval-augmented generation (RAG) from your PDF documents using Langchain and open-source LLMs.
192
- This chatbot takes past questions into account and includes document references.""")
 
 
193
 
194
- with gr.Tab("Step 1 - Initialize LLM"):
195
- llm_btn = gr.Radio(list_llm_simple, label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model")
196
- with gr.Accordion("Advanced options - LLM model", open=False):
197
- slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
198
- slider_maxtokens = gr.Slider(minimum=224, maximum=4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
199
- slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
200
- llm_progress = gr.Textbox(value="Not initialized", label="LLM initialization status")
201
- init_llm_btn = gr.Button("Initialize LLM")
202
-
203
- with gr.Tab("Step 2 - Upload PDF"):
204
- document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
205
 
206
- with gr.Tab("Step 3 - Process document"):
207
- db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
 
208
  with gr.Accordion("Advanced options - Document text splitter", open=False):
209
- slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
210
- slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
211
- db_progress = gr.Textbox(label="Vector database initialization", value="None")
212
- db_btn = gr.Button("Generate vector database")
 
 
 
 
213
 
214
- with gr.Tab("Step 4 - Initialize QA chain"):
215
- llm_progress = gr.Textbox(value="None",label="QA chain initialization")
216
- qachain_btn = gr.Button("Initialize Question Answering chain")
 
 
 
 
 
 
 
 
 
 
 
 
217
 
218
- with gr.Tab("Step 5 - Chatbot"):
219
  chatbot = gr.Chatbot(height=300)
220
  with gr.Accordion("Advanced - Document references", open=False):
221
  with gr.Row():
@@ -233,39 +347,33 @@ def demo():
233
  submit_btn = gr.Button("Submit message")
234
  clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
235
 
236
- # Event handlers
237
- init_llm_btn.click(
238
- initialize_global_llm,
239
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk],
240
- outputs=[llm_progress]
241
- )
242
-
243
- db_btn.click(initialize_database,
244
- inputs=[document, slider_chunk_size, slider_chunk_overlap],
245
  outputs=[vector_db, collection_name, db_progress])
246
-
247
- qachain_btn.click(initialize_LLM,
248
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
249
- outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0],
250
- inputs=None,
251
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
252
  queue=False)
253
 
254
  # Chatbot events
255
- msg.submit(conversation,
256
- inputs=[qa_chain, msg, chatbot],
257
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
258
  queue=False)
259
- submit_btn.click(conversation,
260
- inputs=[qa_chain, msg, chatbot],
261
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
262
  queue=False)
263
- clear_btn.click(lambda:[None,"",0,"",0,"",0],
264
- inputs=None,
265
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
266
  queue=False)
267
-
268
  demo.queue().launch(debug=True)
269
 
 
270
  if __name__ == "__main__":
271
- demo()
 
1
  import gradio as gr
2
  import os
3
+
 
 
 
4
  from langchain_community.document_loaders import PyPDFLoader
5
  from langchain.text_splitter import RecursiveCharacterTextSplitter
6
  from langchain_community.vectorstores import Chroma
7
  from langchain.chains import ConversationalRetrievalChain
8
  from langchain_community.embeddings import HuggingFaceEmbeddings
9
  from langchain_community.llms import HuggingFacePipeline
10
+ from langchain.chains import ConversationChain
11
  from langchain.memory import ConversationBufferMemory
12
+ from langchain_community.llms import HuggingFaceEndpoint
13
  import spaces
14
  from pathlib import Path
15
  import chromadb
16
  from unidecode import unidecode
 
17
 
18
+ from transformers import AutoTokenizer
19
+ import transformers
20
+ import torch
21
+ import tqdm
22
+ import accelerate
23
+ import re
24
 
 
 
25
 
 
 
26
 
27
+ # default_persist_directory = './chroma_HF/'
28
+ list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
29
+ "google/gemma-7b-it","google/gemma-2b-it", \
30
+ "HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", \
31
+ "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
32
+ "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
33
+ "google/flan-t5-xxl"
34
+ ]
35
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
36
 
37
  @spaces.GPU
38
+ # Load PDF document and create doc splits
39
  def load_doc(list_file_path, chunk_size, chunk_overlap):
40
+ # Processing for one document only
41
+ # loader = PyPDFLoader(file_path)
42
+ # pages = loader.load()
43
  loaders = [PyPDFLoader(x) for x in list_file_path]
44
  pages = []
45
  for loader in loaders:
46
  pages.extend(loader.load())
47
+ # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
48
  text_splitter = RecursiveCharacterTextSplitter(
49
+ chunk_size = chunk_size,
50
+ chunk_overlap = chunk_overlap)
51
  doc_splits = text_splitter.split_documents(pages)
52
  return doc_splits
53
 
54
+
55
+ # Create vector database
56
  def create_db(splits, collection_name):
57
+ embedding = HuggingFaceEmbeddings()
 
 
 
 
 
 
58
  new_client = chromadb.EphemeralClient()
59
  vectordb = Chroma.from_documents(
60
  documents=splits,
61
  embedding=embedding,
62
  client=new_client,
63
  collection_name=collection_name,
64
+ # persist_directory=default_persist_directory
65
  )
66
  return vectordb
67
 
68
+
69
+ # Load vector database
70
+ def load_db():
71
+ embedding = HuggingFaceEmbeddings()
72
+ vectordb = Chroma(
73
+ # persist_directory=default_persist_directory,
74
+ embedding_function=embedding)
75
+ return vectordb
76
+
77
+
78
+ # Initialize langchain LLM chain
79
+ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
80
+ progress(0.1, desc="Initializing HF tokenizer...")
81
+ # HuggingFacePipeline uses local model
82
+ # Note: it will download model locally...
83
+ # tokenizer=AutoTokenizer.from_pretrained(llm_model)
84
+ # progress(0.5, desc="Initializing HF pipeline...")
85
+ # pipeline=transformers.pipeline(
86
+ # "text-generation",
87
+ # model=llm_model,
88
+ # tokenizer=tokenizer,
89
+ # torch_dtype=torch.bfloat16,
90
+ # trust_remote_code=True,
91
+ # device_map="auto",
92
+ # # max_length=1024,
93
+ # max_new_tokens=max_tokens,
94
+ # do_sample=True,
95
+ # top_k=top_k,
96
+ # num_return_sequences=1,
97
+ # eos_token_id=tokenizer.eos_token_id
98
+ # )
99
+ # llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
100
+
101
+ # HuggingFaceHub uses HF inference endpoints
102
+ progress(0.5, desc="Initializing HF Hub...")
103
+ # Use of trust_remote_code as model_kwargs
104
+ # Warning: langchain issue
105
+ # URL: https://github.com/langchain-ai/langchain/issues/6080
106
+ if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
107
+ llm = HuggingFaceEndpoint(
108
+ repo_id=llm_model,
109
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
110
+ temperature = temperature,
111
+ max_new_tokens = max_tokens,
112
+ top_k = top_k,
113
+ load_in_8bit = True,
114
+ )
115
+ elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
116
+ raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
117
+ llm = HuggingFaceEndpoint(
118
+ repo_id=llm_model,
119
+ temperature = temperature,
120
+ max_new_tokens = max_tokens,
121
+ top_k = top_k,
122
+ )
123
+ elif llm_model == "microsoft/phi-2":
124
+ # raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
125
+ llm = HuggingFaceEndpoint(
126
+ repo_id=llm_model,
127
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
128
+ temperature = temperature,
129
+ max_new_tokens = max_tokens,
130
+ top_k = top_k,
131
+ trust_remote_code = True,
132
+ torch_dtype = "auto",
133
+ )
134
+ elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
135
+ llm = HuggingFaceEndpoint(
136
+ repo_id=llm_model,
137
+ # model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
138
+ temperature = temperature,
139
+ max_new_tokens = 250,
140
+ top_k = top_k,
141
+ )
142
+ elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
143
+ raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
144
+ llm = HuggingFaceEndpoint(
145
+ repo_id=llm_model,
146
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
147
+ temperature = temperature,
148
+ max_new_tokens = max_tokens,
149
+ top_k = top_k,
150
+ )
151
+ else:
152
+ llm = HuggingFaceEndpoint(
153
+ repo_id=llm_model,
154
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
155
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
156
+ temperature = temperature,
157
+ max_new_tokens = max_tokens,
158
+ top_k = top_k,
159
+ )
160
+
161
+ progress(0.75, desc="Defining buffer memory...")
162
+ memory = ConversationBufferMemory(
163
+ memory_key="chat_history",
164
+ output_key='answer',
165
+ return_messages=True
166
+ )
167
+ # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
168
+ retriever=vector_db.as_retriever()
169
+ progress(0.8, desc="Defining retrieval chain...")
170
+ qa_chain = ConversationalRetrievalChain.from_llm(
171
+ llm,
172
+ retriever=retriever,
173
+ chain_type="stuff",
174
+ memory=memory,
175
+ # combine_docs_chain_kwargs={"prompt": your_prompt})
176
+ return_source_documents=True,
177
+ #return_generated_question=False,
178
+ verbose=False,
179
+ )
180
+ progress(0.9, desc="Done!")
181
+ return qa_chain
182
+
183
+
184
+ # Generate collection name for vector database
185
+ # - Use filepath as input, ensuring unicode text
186
  def create_collection_name(filepath):
187
+ # Extract filename without extension
188
  collection_name = Path(filepath).stem
189
+ # Fix potential issues from naming convention
190
+ ## Remove space
191
+ collection_name = collection_name.replace(" ","-")
192
+ ## ASCII transliterations of Unicode text
193
  collection_name = unidecode(collection_name)
194
+ ## Remove special characters
195
+ #collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
196
  collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
197
+ ## Limit length to 50 characters
198
  collection_name = collection_name[:50]
199
+ ## Minimum length of 3 characters
200
  if len(collection_name) < 3:
201
  collection_name = collection_name + 'xyz'
202
+ ## Enforce start and end as alphanumeric character
203
  if not collection_name[0].isalnum():
204
  collection_name = 'A' + collection_name[1:]
205
  if not collection_name[-1].isalnum():
206
  collection_name = collection_name[:-1] + 'Z'
207
+ print('Filepath: ', filepath)
208
+ print('Collection name: ', collection_name)
209
  return collection_name
210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211
 
212
+ # Initialize database
213
  def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
214
+ # Create list of documents (when valid)
 
 
215
  list_file_path = [x.name for x in list_file_obj if x is not None]
216
+ # Create collection_name for vector database
 
 
217
  progress(0.1, desc="Creating collection name...")
218
  collection_name = create_collection_name(list_file_path[0])
219
  progress(0.25, desc="Loading document...")
220
+ # Load document and create splits
221
  doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
222
+ # Create or load vector database
223
  progress(0.5, desc="Generating vector database...")
224
+ # global vector_db
225
  vector_db = create_db(doc_splits, collection_name)
226
  progress(0.9, desc="Done!")
227
  return vector_db, collection_name, "Complete!"
228
 
229
+
230
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
231
+ # print("llm_option",llm_option)
232
  llm_name = list_llm[llm_option]
233
+ print("llm_name: ",llm_name)
234
+ qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235
  return qa_chain, "Complete!"
236
 
237
+
238
  def format_chat_history(message, chat_history):
239
  formatted_chat_history = []
240
  for user_message, bot_message in chat_history:
241
  formatted_chat_history.append(f"User: {user_message}")
242
  formatted_chat_history.append(f"Assistant: {bot_message}")
243
  return formatted_chat_history
244
+
245
 
246
  def conversation(qa_chain, message, history):
247
  formatted_chat_history = format_chat_history(message, history)
248
+ #print("formatted_chat_history",formatted_chat_history)
249
+
250
+ # Generate response using QA chain
251
  response = qa_chain({"question": message, "chat_history": formatted_chat_history})
252
  response_answer = response["answer"]
253
  if response_answer.find("Helpful Answer:") != -1:
 
256
  response_source1 = response_sources[0].page_content.strip()
257
  response_source2 = response_sources[1].page_content.strip()
258
  response_source3 = response_sources[2].page_content.strip()
259
+ # Langchain sources are zero-based
260
  response_source1_page = response_sources[0].metadata["page"] + 1
261
  response_source2_page = response_sources[1].metadata["page"] + 1
262
  response_source3_page = response_sources[2].metadata["page"] + 1
263
+ # print ('chat response: ', response_answer)
264
+ # print('DB source', response_sources)
265
 
266
+ # Append user message and response to chat history
267
  new_history = history + [(message, response_answer)]
268
+ # return gr.update(value=""), new_history, response_sources[0], response_sources[1]
269
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
270
+
271
+
272
+ def upload_file(file_obj):
273
+ list_file_path = []
274
+ for idx, file in enumerate(file_obj):
275
+ file_path = file_obj.name
276
+ list_file_path.append(file_path)
277
+ # print(file_path)
278
+ # initialize_database(file_path, progress)
279
+ return list_file_path
280
+
281
 
282
  def demo():
283
  with gr.Blocks(theme="base") as demo:
 
286
  collection_name = gr.State()
287
 
288
  gr.Markdown(
289
+ """<center><h2>PDF-based chatbot</center></h2>
290
  <h3>Ask any questions about your PDF documents</h3>""")
291
  gr.Markdown(
292
+ """<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
293
+ The user interface explicitely shows multiple steps to help understand the RAG workflow.
294
+ This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
295
+ <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
296
+ """)
297
 
298
+ with gr.Tab("Step 1 - Upload PDF"):
299
+ with gr.Row():
300
+ document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
301
+ # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
 
 
 
 
 
 
 
302
 
303
+ with gr.Tab("Step 2 - Process document"):
304
+ with gr.Row():
305
+ db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
306
  with gr.Accordion("Advanced options - Document text splitter", open=False):
307
+ with gr.Row():
308
+ slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
309
+ with gr.Row():
310
+ slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
311
+ with gr.Row():
312
+ db_progress = gr.Textbox(label="Vector database initialization", value="None")
313
+ with gr.Row():
314
+ db_btn = gr.Button("Generate vector database")
315
 
316
+ with gr.Tab("Step 3 - Initialize QA chain"):
317
+ with gr.Row():
318
+ llm_btn = gr.Radio(list_llm_simple, \
319
+ label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
320
+ with gr.Accordion("Advanced options - LLM model", open=False):
321
+ with gr.Row():
322
+ slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
323
+ with gr.Row():
324
+ slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
325
+ with gr.Row():
326
+ slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
327
+ with gr.Row():
328
+ llm_progress = gr.Textbox(value="None",label="QA chain initialization")
329
+ with gr.Row():
330
+ qachain_btn = gr.Button("Initialize Question Answering chain")
331
 
332
+ with gr.Tab("Step 4 - Chatbot"):
333
  chatbot = gr.Chatbot(height=300)
334
  with gr.Accordion("Advanced - Document references", open=False):
335
  with gr.Row():
 
347
  submit_btn = gr.Button("Submit message")
348
  clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
349
 
350
+ # Preprocessing events
351
+ #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
352
+ db_btn.click(initialize_database, \
353
+ inputs=[document, slider_chunk_size, slider_chunk_overlap], \
 
 
 
 
 
354
  outputs=[vector_db, collection_name, db_progress])
355
+ qachain_btn.click(initialize_LLM, \
356
+ inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
357
+ outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
358
+ inputs=None, \
359
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
 
360
  queue=False)
361
 
362
  # Chatbot events
363
+ msg.submit(conversation, \
364
+ inputs=[qa_chain, msg, chatbot], \
365
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
366
  queue=False)
367
+ submit_btn.click(conversation, \
368
+ inputs=[qa_chain, msg, chatbot], \
369
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
370
  queue=False)
371
+ clear_btn.click(lambda:[None,"",0,"",0,"",0], \
372
+ inputs=None, \
373
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
374
  queue=False)
 
375
  demo.queue().launch(debug=True)
376
 
377
+
378
  if __name__ == "__main__":
379
+ demo()