Spaces:
Sleeping
Sleeping
| # import gradio as gr | |
| # from transformers import AutoProcessor, AutoModelForImageTextToText | |
| # from PIL import Image | |
| # import re | |
| # # Load SmolDocling model & processor once | |
| # processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
| # model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
| # def extract_fcel_values_from_image(image, prompt_text): | |
| # """Run SmolDocling on an image and return numeric values inside <fcel> tags.""" | |
| # # Prepare prompt for the model | |
| # messages = [ | |
| # {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]} | |
| # ] | |
| # prompt = processor.apply_chat_template(messages, add_generation_prompt=True) | |
| # inputs = processor(text=prompt, images=[image], return_tensors="pt") | |
| # # Generate output | |
| # outputs = model.generate(**inputs, max_new_tokens=2048) | |
| # prompt_length = inputs.input_ids.shape[1] | |
| # generated = outputs[:, prompt_length:] | |
| # result = processor.batch_decode(generated, skip_special_tokens=False)[0] | |
| # clean_text = result.replace("<end_of_utterance>", "").strip() | |
| # # Extract only <fcel> values | |
| # values = re.findall(r"<fcel>([\d.]+)", clean_text) | |
| # values = [float(v) for v in values] # convert to floats | |
| # return values, clean_text | |
| # def compare_images(image1, image2, prompt_text): | |
| # # Extract fcel values from both images | |
| # values1, raw1 = extract_fcel_values_from_image(image1, prompt_text) | |
| # values2, raw2 = extract_fcel_values_from_image(image2, prompt_text) | |
| # # Calculate accuracy | |
| # if len(values1) == len(values2) and values1 == values2: | |
| # accuracy = 100.0 | |
| # else: | |
| # matches = sum(1 for a, b in zip(values1, values2) if a == b) | |
| # total = max(len(values1), len(values2)) | |
| # accuracy = (matches / total) * 100 if total > 0 else 0 | |
| # return { | |
| # # "Extracted Values 1": values1, | |
| # # "Extracted Values 2": values2, | |
| # "Accuracy (%)": accuracy | |
| # } | |
| # # Gradio UI | |
| # demo = gr.Interface( | |
| # fn=compare_images, | |
| # inputs=[ | |
| # gr.Image(type="pil", label="Upload First Table Image"), | |
| # gr.Image(type="pil", label="Upload Second Table Image"), | |
| # gr.Textbox(lines=1, placeholder="Enter prompt (e.g. Extract table as OTSL)", label="Prompt") | |
| # ], | |
| # outputs="json", | |
| # title="Table Data Accuracy Checker (SmolDocling)", | |
| # description="Uploads two table images, extracts only <fcel> values from OTSL output, and compares them for accuracy." | |
| # ) | |
| # demo.launch() | |
| import gradio as gr | |
| from transformers import AutoProcessor, AutoModelForImageTextToText | |
| from PIL import Image | |
| # Load model & processor once at startup | |
| processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
| model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
| def smoldocling_readimage(image, prompt_text): | |
| messages = [ | |
| {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]} | |
| ] | |
| prompt = processor.apply_chat_template(messages, add_generation_prompt=True) | |
| inputs = processor(text=prompt, images=[image], return_tensors="pt") | |
| outputs = model.generate(**inputs, max_new_tokens=1024) | |
| prompt_length = inputs.input_ids.shape[1] | |
| generated = outputs[:, prompt_length:] | |
| result = processor.batch_decode(generated, skip_special_tokens=False)[0] | |
| return result.replace("<end_of_utterance>", "").strip() | |
| # Gradio UI | |
| demo = gr.Interface( | |
| fn=smoldocling_readimage, | |
| inputs=[ | |
| gr.Image(type="pil", label="Upload Image"), | |
| gr.Textbox(lines=1, placeholder="Enter prompt (e.g. Convert to docling)", label="Prompt"), | |
| ], | |
| outputs="ostl", | |
| title="SmolDocling Web App", | |
| description="Upload a document image and convert it to structured docling format." | |
| ) | |
| demo.launch() |