Spaces:
Sleeping
Sleeping
from collections import OrderedDict | |
import cv2 | |
import numpy as np | |
import torch | |
from PIL import Image | |
from SCHP import networks | |
from SCHP.utils.transforms import get_affine_transform, transform_logits | |
from torchvision import transforms | |
def get_palette(num_cls): | |
"""Returns the color map for visualizing the segmentation mask. | |
Args: | |
num_cls: Number of classes | |
Returns: | |
The color map | |
""" | |
n = num_cls | |
palette = [0] * (n * 3) | |
for j in range(0, n): | |
lab = j | |
palette[j * 3 + 0] = 0 | |
palette[j * 3 + 1] = 0 | |
palette[j * 3 + 2] = 0 | |
i = 0 | |
while lab: | |
palette[j * 3 + 0] |= ((lab >> 0) & 1) << (7 - i) | |
palette[j * 3 + 1] |= ((lab >> 1) & 1) << (7 - i) | |
palette[j * 3 + 2] |= ((lab >> 2) & 1) << (7 - i) | |
i += 1 | |
lab >>= 3 | |
return palette | |
dataset_settings = { | |
"lip": { | |
"input_size": [473, 473], | |
"num_classes": 20, | |
"label": [ | |
"Background", | |
"Hat", | |
"Hair", | |
"Glove", | |
"Sunglasses", | |
"Upper-clothes", | |
"Dress", | |
"Coat", | |
"Socks", | |
"Pants", | |
"Jumpsuits", | |
"Scarf", | |
"Skirt", | |
"Face", | |
"Left-arm", | |
"Right-arm", | |
"Left-leg", | |
"Right-leg", | |
"Left-shoe", | |
"Right-shoe", | |
], | |
}, | |
"atr": { | |
"input_size": [512, 512], | |
"num_classes": 18, | |
"label": [ | |
"Background", | |
"Hat", | |
"Hair", | |
"Sunglasses", | |
"Upper-clothes", | |
"Skirt", | |
"Pants", | |
"Dress", | |
"Belt", | |
"Left-shoe", | |
"Right-shoe", | |
"Face", | |
"Left-leg", | |
"Right-leg", | |
"Left-arm", | |
"Right-arm", | |
"Bag", | |
"Scarf", | |
], | |
}, | |
"pascal": { | |
"input_size": [512, 512], | |
"num_classes": 7, | |
"label": [ | |
"Background", | |
"Head", | |
"Torso", | |
"Upper Arms", | |
"Lower Arms", | |
"Upper Legs", | |
"Lower Legs", | |
], | |
}, | |
} | |
class SCHP: | |
def __init__(self, ckpt_path, device): | |
dataset_type = None | |
if "lip" in ckpt_path: | |
dataset_type = "lip" | |
elif "atr" in ckpt_path: | |
dataset_type = "atr" | |
elif "pascal" in ckpt_path: | |
dataset_type = "pascal" | |
assert dataset_type is not None, "Dataset type not found in checkpoint path" | |
self.device = device | |
self.num_classes = dataset_settings[dataset_type]["num_classes"] | |
self.input_size = dataset_settings[dataset_type]["input_size"] | |
self.aspect_ratio = self.input_size[1] * 1.0 / self.input_size[0] | |
self.palette = get_palette(self.num_classes) | |
self.label = dataset_settings[dataset_type]["label"] | |
self.model = networks.init_model( | |
"resnet101", num_classes=self.num_classes, pretrained=None | |
).to(device) | |
self.load_ckpt(ckpt_path) | |
self.model.eval() | |
self.transform = transforms.Compose( | |
[ | |
transforms.ToTensor(), | |
transforms.Normalize( | |
mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229] | |
), | |
] | |
) | |
self.upsample = torch.nn.Upsample( | |
size=self.input_size, mode="bilinear", align_corners=True | |
) | |
def load_ckpt(self, ckpt_path): | |
rename_map = { | |
"decoder.conv3.2.weight": "decoder.conv3.3.weight", | |
"decoder.conv3.3.weight": "decoder.conv3.4.weight", | |
"decoder.conv3.3.bias": "decoder.conv3.4.bias", | |
"decoder.conv3.3.running_mean": "decoder.conv3.4.running_mean", | |
"decoder.conv3.3.running_var": "decoder.conv3.4.running_var", | |
"fushion.3.weight": "fushion.4.weight", | |
"fushion.3.bias": "fushion.4.bias", | |
} | |
state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"] | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k[7:] # remove `module.` | |
new_state_dict[name] = v | |
new_state_dict_ = OrderedDict() | |
for k, v in list(new_state_dict.items()): | |
if k in rename_map: | |
new_state_dict_[rename_map[k]] = v | |
else: | |
new_state_dict_[k] = v | |
self.model.load_state_dict(new_state_dict_, strict=False) | |
def _box2cs(self, box): | |
x, y, w, h = box[:4] | |
return self._xywh2cs(x, y, w, h) | |
def _xywh2cs(self, x, y, w, h): | |
center = np.zeros((2), dtype=np.float32) | |
center[0] = x + w * 0.5 | |
center[1] = y + h * 0.5 | |
if w > self.aspect_ratio * h: | |
h = w * 1.0 / self.aspect_ratio | |
elif w < self.aspect_ratio * h: | |
w = h * self.aspect_ratio | |
scale = np.array([w, h], dtype=np.float32) | |
return center, scale | |
def preprocess(self, image): | |
if isinstance(image, str): | |
img = cv2.imread(image, cv2.IMREAD_COLOR) | |
elif isinstance(image, Image.Image): | |
# to cv2 format | |
img = np.array(image) | |
h, w, _ = img.shape | |
# Get person center and scale | |
person_center, s = self._box2cs([0, 0, w - 1, h - 1]) | |
r = 0 | |
trans = get_affine_transform(person_center, s, r, self.input_size) | |
input = cv2.warpAffine( | |
img, | |
trans, | |
(int(self.input_size[1]), int(self.input_size[0])), | |
flags=cv2.INTER_LINEAR, | |
borderMode=cv2.BORDER_CONSTANT, | |
borderValue=(0, 0, 0), | |
) | |
input = self.transform(input).to(self.device).unsqueeze(0) | |
meta = { | |
"center": person_center, | |
"height": h, | |
"width": w, | |
"scale": s, | |
"rotation": r, | |
} | |
return input, meta | |
def __call__(self, image_or_path): | |
if isinstance(image_or_path, list): | |
image_list = [] | |
meta_list = [] | |
for image in image_or_path: | |
image, meta = self.preprocess(image) | |
image_list.append(image) | |
meta_list.append(meta) | |
image = torch.cat(image_list, dim=0) | |
else: | |
image, meta = self.preprocess(image_or_path) | |
meta_list = [meta] | |
output = self.model(image) | |
# upsample_outputs = self.upsample(output[0][-1]) | |
upsample_outputs = self.upsample(output) | |
upsample_outputs = upsample_outputs.permute(0, 2, 3, 1) # BCHW -> BHWC | |
output_img_list = [] | |
for upsample_output, meta in zip(upsample_outputs, meta_list): | |
c, s, w, h = meta["center"], meta["scale"], meta["width"], meta["height"] | |
logits_result = transform_logits( | |
upsample_output.data.cpu().numpy(), | |
c, | |
s, | |
w, | |
h, | |
input_size=self.input_size, | |
) | |
parsing_result = np.argmax(logits_result, axis=2) | |
output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8)) | |
output_img.putpalette(self.palette) | |
output_img_list.append(output_img) | |
return output_img_list[0] if len(output_img_list) == 1 else output_img_list | |