Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) Facebook, Inc. and its affiliates. | |
import copy | |
import numpy as np | |
from contextlib import contextmanager | |
from itertools import count | |
from typing import List | |
import torch | |
from fvcore.transforms import HFlipTransform, NoOpTransform | |
from torch import nn | |
from torch.nn.parallel import DistributedDataParallel | |
from detectron2.config import configurable | |
from detectron2.data.detection_utils import read_image | |
from detectron2.data.transforms import ( | |
RandomFlip, | |
ResizeShortestEdge, | |
ResizeTransform, | |
apply_augmentations, | |
) | |
from detectron2.structures import Boxes, Instances | |
from .meta_arch import GeneralizedRCNN | |
from .postprocessing import detector_postprocess | |
from .roi_heads.fast_rcnn import fast_rcnn_inference_single_image | |
__all__ = ["DatasetMapperTTA", "GeneralizedRCNNWithTTA"] | |
class DatasetMapperTTA: | |
""" | |
Implement test-time augmentation for detection data. | |
It is a callable which takes a dataset dict from a detection dataset, | |
and returns a list of dataset dicts where the images | |
are augmented from the input image by the transformations defined in the config. | |
This is used for test-time augmentation. | |
""" | |
def __init__(self, min_sizes: List[int], max_size: int, flip: bool): | |
""" | |
Args: | |
min_sizes: list of short-edge size to resize the image to | |
max_size: maximum height or width of resized images | |
flip: whether to apply flipping augmentation | |
""" | |
self.min_sizes = min_sizes | |
self.max_size = max_size | |
self.flip = flip | |
def from_config(cls, cfg): | |
return { | |
"min_sizes": cfg.TEST.AUG.MIN_SIZES, | |
"max_size": cfg.TEST.AUG.MAX_SIZE, | |
"flip": cfg.TEST.AUG.FLIP, | |
} | |
def __call__(self, dataset_dict): | |
""" | |
Args: | |
dict: a dict in standard model input format. See tutorials for details. | |
Returns: | |
list[dict]: | |
a list of dicts, which contain augmented version of the input image. | |
The total number of dicts is ``len(min_sizes) * (2 if flip else 1)``. | |
Each dict has field "transforms" which is a TransformList, | |
containing the transforms that are used to generate this image. | |
""" | |
numpy_image = dataset_dict["image"].permute(1, 2, 0).numpy() | |
shape = numpy_image.shape | |
orig_shape = (dataset_dict["height"], dataset_dict["width"]) | |
if shape[:2] != orig_shape: | |
# It transforms the "original" image in the dataset to the input image | |
pre_tfm = ResizeTransform(orig_shape[0], orig_shape[1], shape[0], shape[1]) | |
else: | |
pre_tfm = NoOpTransform() | |
# Create all combinations of augmentations to use | |
aug_candidates = [] # each element is a list[Augmentation] | |
for min_size in self.min_sizes: | |
resize = ResizeShortestEdge(min_size, self.max_size) | |
aug_candidates.append([resize]) # resize only | |
if self.flip: | |
flip = RandomFlip(prob=1.0) | |
aug_candidates.append([resize, flip]) # resize + flip | |
# Apply all the augmentations | |
ret = [] | |
for aug in aug_candidates: | |
new_image, tfms = apply_augmentations(aug, np.copy(numpy_image)) | |
torch_image = torch.from_numpy(np.ascontiguousarray(new_image.transpose(2, 0, 1))) | |
dic = copy.deepcopy(dataset_dict) | |
dic["transforms"] = pre_tfm + tfms | |
dic["image"] = torch_image | |
ret.append(dic) | |
return ret | |
class GeneralizedRCNNWithTTA(nn.Module): | |
""" | |
A GeneralizedRCNN with test-time augmentation enabled. | |
Its :meth:`__call__` method has the same interface as :meth:`GeneralizedRCNN.forward`. | |
""" | |
def __init__(self, cfg, model, tta_mapper=None, batch_size=3): | |
""" | |
Args: | |
cfg (CfgNode): | |
model (GeneralizedRCNN): a GeneralizedRCNN to apply TTA on. | |
tta_mapper (callable): takes a dataset dict and returns a list of | |
augmented versions of the dataset dict. Defaults to | |
`DatasetMapperTTA(cfg)`. | |
batch_size (int): batch the augmented images into this batch size for inference. | |
""" | |
super().__init__() | |
if isinstance(model, DistributedDataParallel): | |
model = model.module | |
assert isinstance( | |
model, GeneralizedRCNN | |
), "TTA is only supported on GeneralizedRCNN. Got a model of type {}".format(type(model)) | |
self.cfg = cfg.clone() | |
assert not self.cfg.MODEL.KEYPOINT_ON, "TTA for keypoint is not supported yet" | |
assert ( | |
not self.cfg.MODEL.LOAD_PROPOSALS | |
), "TTA for pre-computed proposals is not supported yet" | |
self.model = model | |
if tta_mapper is None: | |
tta_mapper = DatasetMapperTTA(cfg) | |
self.tta_mapper = tta_mapper | |
self.batch_size = batch_size | |
def _turn_off_roi_heads(self, attrs): | |
""" | |
Open a context where some heads in `model.roi_heads` are temporarily turned off. | |
Args: | |
attr (list[str]): the attribute in `model.roi_heads` which can be used | |
to turn off a specific head, e.g., "mask_on", "keypoint_on". | |
""" | |
roi_heads = self.model.roi_heads | |
old = {} | |
for attr in attrs: | |
try: | |
old[attr] = getattr(roi_heads, attr) | |
except AttributeError: | |
# The head may not be implemented in certain ROIHeads | |
pass | |
if len(old.keys()) == 0: | |
yield | |
else: | |
for attr in old.keys(): | |
setattr(roi_heads, attr, False) | |
yield | |
for attr in old.keys(): | |
setattr(roi_heads, attr, old[attr]) | |
def _batch_inference(self, batched_inputs, detected_instances=None): | |
""" | |
Execute inference on a list of inputs, | |
using batch size = self.batch_size, instead of the length of the list. | |
Inputs & outputs have the same format as :meth:`GeneralizedRCNN.inference` | |
""" | |
if detected_instances is None: | |
detected_instances = [None] * len(batched_inputs) | |
outputs = [] | |
inputs, instances = [], [] | |
for idx, input, instance in zip(count(), batched_inputs, detected_instances): | |
inputs.append(input) | |
instances.append(instance) | |
if len(inputs) == self.batch_size or idx == len(batched_inputs) - 1: | |
outputs.extend( | |
self.model.inference( | |
inputs, | |
instances if instances[0] is not None else None, | |
do_postprocess=False, | |
) | |
) | |
inputs, instances = [], [] | |
return outputs | |
def __call__(self, batched_inputs): | |
""" | |
Same input/output format as :meth:`GeneralizedRCNN.forward` | |
""" | |
def _maybe_read_image(dataset_dict): | |
ret = copy.copy(dataset_dict) | |
if "image" not in ret: | |
image = read_image(ret.pop("file_name"), self.model.input_format) | |
image = torch.from_numpy(np.ascontiguousarray(image.transpose(2, 0, 1))) # CHW | |
ret["image"] = image | |
if "height" not in ret and "width" not in ret: | |
ret["height"] = image.shape[1] | |
ret["width"] = image.shape[2] | |
return ret | |
return [self._inference_one_image(_maybe_read_image(x)) for x in batched_inputs] | |
def _inference_one_image(self, input): | |
""" | |
Args: | |
input (dict): one dataset dict with "image" field being a CHW tensor | |
Returns: | |
dict: one output dict | |
""" | |
orig_shape = (input["height"], input["width"]) | |
augmented_inputs, tfms = self._get_augmented_inputs(input) | |
# Detect boxes from all augmented versions | |
with self._turn_off_roi_heads(["mask_on", "keypoint_on"]): | |
# temporarily disable roi heads | |
all_boxes, all_scores, all_classes = self._get_augmented_boxes(augmented_inputs, tfms) | |
# merge all detected boxes to obtain final predictions for boxes | |
merged_instances = self._merge_detections(all_boxes, all_scores, all_classes, orig_shape) | |
if self.cfg.MODEL.MASK_ON: | |
# Use the detected boxes to obtain masks | |
augmented_instances = self._rescale_detected_boxes( | |
augmented_inputs, merged_instances, tfms | |
) | |
# run forward on the detected boxes | |
outputs = self._batch_inference(augmented_inputs, augmented_instances) | |
# Delete now useless variables to avoid being out of memory | |
del augmented_inputs, augmented_instances | |
# average the predictions | |
merged_instances.pred_masks = self._reduce_pred_masks(outputs, tfms) | |
merged_instances = detector_postprocess(merged_instances, *orig_shape) | |
return {"instances": merged_instances} | |
else: | |
return {"instances": merged_instances} | |
def _get_augmented_inputs(self, input): | |
augmented_inputs = self.tta_mapper(input) | |
tfms = [x.pop("transforms") for x in augmented_inputs] | |
return augmented_inputs, tfms | |
def _get_augmented_boxes(self, augmented_inputs, tfms): | |
# 1: forward with all augmented images | |
outputs = self._batch_inference(augmented_inputs) | |
# 2: union the results | |
all_boxes = [] | |
all_scores = [] | |
all_classes = [] | |
for output, tfm in zip(outputs, tfms): | |
# Need to inverse the transforms on boxes, to obtain results on original image | |
pred_boxes = output.pred_boxes.tensor | |
original_pred_boxes = tfm.inverse().apply_box(pred_boxes.cpu().numpy()) | |
all_boxes.append(torch.from_numpy(original_pred_boxes).to(pred_boxes.device)) | |
all_scores.extend(output.scores) | |
all_classes.extend(output.pred_classes) | |
all_boxes = torch.cat(all_boxes, dim=0) | |
return all_boxes, all_scores, all_classes | |
def _merge_detections(self, all_boxes, all_scores, all_classes, shape_hw): | |
# select from the union of all results | |
num_boxes = len(all_boxes) | |
num_classes = self.cfg.MODEL.ROI_HEADS.NUM_CLASSES | |
# +1 because fast_rcnn_inference expects background scores as well | |
all_scores_2d = torch.zeros(num_boxes, num_classes + 1, device=all_boxes.device) | |
for idx, cls, score in zip(count(), all_classes, all_scores): | |
all_scores_2d[idx, cls] = score | |
merged_instances, _ = fast_rcnn_inference_single_image( | |
all_boxes, | |
all_scores_2d, | |
shape_hw, | |
1e-8, | |
self.cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST, | |
self.cfg.TEST.DETECTIONS_PER_IMAGE, | |
) | |
return merged_instances | |
def _rescale_detected_boxes(self, augmented_inputs, merged_instances, tfms): | |
augmented_instances = [] | |
for input, tfm in zip(augmented_inputs, tfms): | |
# Transform the target box to the augmented image's coordinate space | |
pred_boxes = merged_instances.pred_boxes.tensor.cpu().numpy() | |
pred_boxes = torch.from_numpy(tfm.apply_box(pred_boxes)) | |
aug_instances = Instances( | |
image_size=input["image"].shape[1:3], | |
pred_boxes=Boxes(pred_boxes), | |
pred_classes=merged_instances.pred_classes, | |
scores=merged_instances.scores, | |
) | |
augmented_instances.append(aug_instances) | |
return augmented_instances | |
def _reduce_pred_masks(self, outputs, tfms): | |
# Should apply inverse transforms on masks. | |
# We assume only resize & flip are used. pred_masks is a scale-invariant | |
# representation, so we handle flip specially | |
for output, tfm in zip(outputs, tfms): | |
if any(isinstance(t, HFlipTransform) for t in tfm.transforms): | |
output.pred_masks = output.pred_masks.flip(dims=[3]) | |
all_pred_masks = torch.stack([o.pred_masks for o in outputs], dim=0) | |
avg_pred_masks = torch.mean(all_pred_masks, dim=0) | |
return avg_pred_masks | |