|
from fastai.vision.all import * |
|
import gradio as gr |
|
import timm |
|
import dill |
|
import os |
|
|
|
is_catan_learn = load_learner('./models/catan-model-paperspace-2022-11-29-05-17-46.pkl', pickle_module=dill) |
|
catan_category_learn = load_learner('./models/categories-of-catan-3.pkl', pickle_module=dill) |
|
|
|
|
|
|
|
def classify_image(img): |
|
pred, pred_idx, probs = is_catan_learn.predict(img) |
|
if float(probs[1]) < 0.2: |
|
|
|
categories = ('Not Catan', 'Catan') |
|
message = f'Did not detect Catan in this upload: *{probs[1]:.4f}%*. Choose another photo with Catan in it and we will categorize what kind of Catan we find.' |
|
details = dict(zip(categories, map(float, probs))) |
|
else: |
|
pred, pred_idx, probs = catan_category_learn.predict(img) |
|
message = f'Prediction: *{pred}*; Probability: *{probs[pred_idx]:.04f}%*' |
|
categories = catan_category_learn.dls.vocab |
|
details = dict(zip(categories, map(float, probs))) |
|
|
|
return details, message |
|
|
|
|
|
|
|
image = gr.inputs.Image(shape=(192, 192)) |
|
label = gr.outputs.Label() |
|
description = gr.Markdown() |
|
|
|
examples_dir_path = './examples/' |
|
examples = [(examples_dir_path + filename) for filename in os.listdir(examples_dir_path) if filename[:1] != '.'] |
|
|
|
|
|
intf = gr.Interface(fn=classify_image, inputs=image, outputs=[label, description], examples=examples) |
|
intf.launch() |
|
|