Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import re | |
import os | |
from typing import List | |
from src.utils_display import AutoEvalColumn | |
from src.auto_leaderboard.model_metadata_type import get_model_type | |
from huggingface_hub import HfApi | |
import huggingface_hub | |
api = HfApi(token=os.environ.get("H4_TOKEN", None)) | |
def get_model_infos_from_hub(leaderboard_data: List[dict]): | |
for model_data in leaderboard_data: | |
model_name = model_data["model_name_for_query"] | |
try: | |
model_info = api.model_info(model_name) | |
except huggingface_hub.utils._errors.RepositoryNotFoundError: | |
print("Repo not found!", model_name) | |
model_data[AutoEvalColumn.license.name] = None | |
model_data[AutoEvalColumn.likes.name] = None | |
model_data[AutoEvalColumn.params.name] = get_model_size(model_name, None) | |
continue | |
model_data[AutoEvalColumn.license.name] = get_model_license(model_info) | |
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info) | |
model_data[AutoEvalColumn.params.name] = get_model_size(model_name, model_info) | |
def get_model_license(model_info): | |
try: | |
return model_info.cardData["license"] | |
except Exception: | |
return None | |
def get_model_likes(model_info): | |
return model_info.likes | |
size_pattern = re.compile(r"(\d\.)?\d+(b|m)") | |
def get_model_size(model_name, model_info): | |
# In billions | |
try: | |
return round(model_info.safetensors["total"] / 1e9, 3) | |
except AttributeError: | |
try: | |
size_match = re.search(size_pattern, model_name.lower()) | |
size = size_match.group(0) | |
return round(float(size[:-1]) if size[-1] == "b" else float(size[:-1]) / 1e3, 3) | |
except AttributeError: | |
return None | |
def apply_metadata(leaderboard_data: List[dict]): | |
get_model_type(leaderboard_data) | |
get_model_infos_from_hub(leaderboard_data) | |