Spaces:
Running
Running
Update hf_transcriber.py
Browse files- hf_transcriber.py +10 -8
hf_transcriber.py
CHANGED
|
@@ -45,16 +45,18 @@ class HFTranscriber:
|
|
| 45 |
try:
|
| 46 |
# Try to get Hugging Face token from environment
|
| 47 |
hf_token = (os.environ.get('HUGGINGFACE_TOKEN') or os.environ.get('HF_TOKEN') or (st.secrets.get('HUGGINGFACE_TOKEN') if 'secrets' in globals() and hasattr(st.secrets, 'get') else None) or (st.secrets.get('HF_TOKEN') if 'secrets' in globals() and hasattr(st.secrets, 'get') else None))
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
| 56 |
load_kwargs = {k: v for k, v in load_kwargs.items() if v is not None}
|
| 57 |
|
|
|
|
| 58 |
if self.is_speecht5:
|
| 59 |
# Load SpeechT5 model and processor
|
| 60 |
self.processor = SpeechT5Processor.from_pretrained(
|
|
|
|
| 45 |
try:
|
| 46 |
# Try to get Hugging Face token from environment
|
| 47 |
hf_token = (os.environ.get('HUGGINGFACE_TOKEN') or os.environ.get('HF_TOKEN') or (st.secrets.get('HUGGINGFACE_TOKEN') if 'secrets' in globals() and hasattr(st.secrets, 'get') else None) or (st.secrets.get('HF_TOKEN') if 'secrets' in globals() and hasattr(st.secrets, 'get') else None))
|
| 48 |
+
if not hf_token:
|
| 49 |
+
st.sidebar.error("No Hugging Face token found. Using public access (rate limited).Please add it to your environment variables as HUGGINGFACE_TOKEN or HF_TOKEN.")
|
| 50 |
+
#Configure headers for API requests
|
| 51 |
+
headers ={}
|
| 52 |
+
if hf_token:
|
| 53 |
+
headers['Authorization'] = f'Bearer {hf_token}'
|
| 54 |
+
#Configure model loading parameters
|
| 55 |
+
load_kwargs = {'token': hf_token, 'use_auth_token': hf_token, 'local_files_only': False, 'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
|
| 56 |
+
#Remove None values
|
| 57 |
load_kwargs = {k: v for k, v in load_kwargs.items() if v is not None}
|
| 58 |
|
| 59 |
+
#Rest of model loading code.....
|
| 60 |
if self.is_speecht5:
|
| 61 |
# Load SpeechT5 model and processor
|
| 62 |
self.processor = SpeechT5Processor.from_pretrained(
|