Spaces:
Sleeping
Sleeping
import time | |
import gradio as gr | |
import os | |
import asyncio | |
from pymongo import MongoClient | |
from langchain_community.vectorstores import MongoDBAtlasVectorSearch | |
from langchain_openai import OpenAIEmbeddings | |
from langchain_community.llms import OpenAI | |
from langchain_openai import ChatOpenAI | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
output_parser = StrOutputParser() | |
import json | |
## Connect to MongoDB Atlas local cluster | |
MONGODB_ATLAS_CLUSTER_URI = os.getenv('MONGODB_ATLAS_CLUSTER_URI') | |
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI) | |
db_name = 'sample_mflix' | |
collection_name = 'embedded_movies' | |
collection = client[db_name][collection_name] | |
try: | |
vector_store = MongoDBAtlasVectorSearch(embedding=OpenAIEmbeddings(), collection=collection, index_name='vector_index', text_key='plot', embedding_key='plot_embedding') | |
llm = ChatOpenAI(temperature=0) | |
prompt = ChatPromptTemplate.from_messages([ | |
("system", "You are a movie recommendation engine which post a concise and short summary on relevant movies."), | |
("user", "List of movies: {input}") | |
]) | |
chain = prompt | llm | output_parser | |
except: | |
#If open ai key is wrong | |
print ('Open AI key is wrong') | |
vector_store = None | |
def get_movies(message, history): | |
try: | |
movies = vector_store.similarity_search(message, 3) | |
return_text = '' | |
for movie in movies: | |
return_text = return_text + 'Title : ' + movie.metadata['title'] + '\n------------\n' + 'Plot: ' + movie.page_content + '\n\n' | |
print_llm_text = chain.invoke({"input": return_text}) | |
for i in range(len(print_llm_text)): | |
time.sleep(0.05) | |
yield "Found: " + "\n\n" + print_llm_text[: i+1] | |
except: | |
yield "Please clone the repo and add your open ai key as well as your MongoDB Atlas URI in the Secret Section of you Space\n OPENAI_API_KEY (your Open AI key) and MONGODB_ATLAS_CLUSTER_URI (0.0.0.0/0 whitelisted instance with Vector index created) \n\n For more information : https://mongodb.com/products/platform/atlas-vector-search" | |
demo = gr.ChatInterface(get_movies, examples=["What movies are scary?", "Find me a comedy", "Movies for kids"], title="Movies Atlas Vector Search",description="This small chat uses a similarity search to find relevant movies, it uses an MongoDB Atlase Vector Search read more here: https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-tutorial",submit_btn="Search").queue() | |
if __name__ == "__main__": | |
demo.launch() |