Tranception_design / tranception /model_pytorch.py
PascalNotin's picture
Implemented first version of design app
1335bda
raw
history blame
45.5 kB
from dataclasses import dataclass
from typing import Optional, Tuple
import math
import os
import pandas as pd
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, NLLLoss
import torch.nn.functional as F
from transformers import GPT2PreTrainedModel
from transformers.modeling_utils import (
Conv1D,
PreTrainedModel,
SequenceSummary,
find_pruneable_heads_and_indices,
prune_conv1d_layer,
)
from transformers.file_utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings
)
from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
SequenceClassifierOutputWithPast,
TokenClassifierOutput
)
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
from tranception.activations import tranception_ACT2FN
from tranception.config import TranceptionConfig
from tranception.outputs import (
TranceptionCausalLMOutputWithCrossAttentions,
)
from tranception.utils import msa_utils
from tranception.utils import scoring_utils
def nanmean(v, *args, inplace=False, **kwargs):
if not inplace:
v = v.clone()
is_nan = torch.isnan(v)
v[is_nan] = 0
return v.sum(*args, **kwargs) / (~is_nan).float().sum(*args, **kwargs)
def get_slopes(n, mode="standard_alibi", verbose=False):
"""
Function to compute the m constant for each attention head. Code has been adapted from the official ALiBi codebase at:
https://github.com/ofirpress/attention_with_linear_biases/blob/master/fairseq/models/transformer.py
"""
def get_slopes_power_of_2(n):
start = (2**(-2**-(math.log2(n)-3)))
ratio = start
return [start*ratio**i for i in range(n)]
if mode=="grouped_alibi":
n = n // 4
if math.log2(n).is_integer():
result = get_slopes_power_of_2(n)
else:
#Workaround when the number of heads is not a power of 2
closest_power_of_2 = 2**math.floor(math.log2(n))
result = get_slopes_power_of_2(closest_power_of_2) + get_slopes(2*closest_power_of_2)[0::2][:n-closest_power_of_2]
if mode=="grouped_alibi":
result = result * 4
if verbose:
print("ALiBi slopes: {}".format(result))
return result
class SpatialDepthWiseConvolution(nn.Module):
def __init__(self, head_dim: int, kernel_size: int = 3):
super().__init__()
self.kernel_size = kernel_size
self.conv = nn.Conv1d(in_channels=head_dim, out_channels=head_dim, kernel_size=(kernel_size,), padding=(kernel_size - 1,), groups=head_dim)
def forward(self, x: torch.Tensor):
batch_size, heads, seq_len, head_dim = x.shape
x = x.permute(0, 1, 3, 2).contiguous()
x = x.view(batch_size * heads, head_dim, seq_len)
x = self.conv(x)
if self.kernel_size>1:
x = x[:, :, :-(self.kernel_size - 1)]
x = x.view(batch_size, heads, head_dim, seq_len)
x = x.permute(0, 1, 3, 2)
return x
class TranceptionBlockAttention(nn.Module):
def __init__(self, config, is_cross_attention=False, SDWC_kernel_size=None):
super().__init__()
max_positions = config.max_position_embeddings
self.register_buffer(
"bias",
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(
1, 1, max_positions, max_positions
),
)
self.register_buffer("masked_bias", torch.tensor(-1e4))
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.split_size = self.embed_dim
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
)
self.scale_attn_weights = config.scale_attn_weights
self.is_cross_attention = is_cross_attention
if self.is_cross_attention:
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
else:
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.pruned_heads = set()
self.attention_mode=config.attention_mode
if self.attention_mode=="tranception":
assert self.num_heads%4==0, "Invalid number of heads. Tranception requires the number of heads to be a multiple of 4."
self.num_heads_per_kernel_size = self.num_heads // 4
self.query_depthwiseconv = nn.ModuleDict()
self.key_depthwiseconv = nn.ModuleDict()
self.value_depthwiseconv = nn.ModuleDict()
for kernel_idx, kernel in enumerate([3,5,7]):
self.query_depthwiseconv[str(kernel_idx)] = SpatialDepthWiseConvolution(self.head_dim,kernel)
self.key_depthwiseconv[str(kernel_idx)] = SpatialDepthWiseConvolution(self.head_dim,kernel)
self.value_depthwiseconv[str(kernel_idx)] = SpatialDepthWiseConvolution(self.head_dim,kernel)
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
# Prune conv1d layers
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
# Update hyper params
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
self.num_heads = self.num_heads - len(heads)
self.pruned_heads = self.pruned_heads.union(heads)
def _attn(self, query, key, value, attention_mask=None, head_mask=None, alibi_bias=None):
attn_weights = torch.matmul(query, key.transpose(-1, -2))
if self.scale_attn_weights:
attn_weights = attn_weights / (float(value.size(-1)) ** 0.5)
if not self.is_cross_attention:
# if only "normal" attention layer implements causal mask
query_length, key_length = query.size(-2), key.size(-2)
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].bool()
attn_weights = torch.where(causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype))
if alibi_bias is not None:
attn_weights = attn_weights + alibi_bias[:,:,:attn_weights.size(-1)]
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = nn.Softmax(dim=-1)(attn_weights)
attn_weights = self.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
def _split_heads(self, tensor, num_heads, attn_head_size):
"""
Splits hidden_size dim into attn_head_size and num_heads
"""
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
tensor = tensor.view(*new_shape)
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
def _merge_heads(self, tensor, num_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden_size
"""
tensor = tensor.permute(0, 2, 1, 3).contiguous()
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
return tensor.view(new_shape)
def forward(
self,
hidden_states,
layer_past=None,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
use_cache=False,
output_attentions=False,
alibi_bias=None,
):
if encoder_hidden_states is not None:
if not hasattr(self, "q_attn"):
raise ValueError(
"If class is used as cross attention, the weights `q_attn` have to be defined. "
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
)
query = self.q_attn(hidden_states)
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
attention_mask = encoder_attention_mask
else:
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
query = self._split_heads(query, self.num_heads, self.head_dim)
key = self._split_heads(key, self.num_heads, self.head_dim)
value = self._split_heads(value, self.num_heads, self.head_dim)
if layer_past is not None:
past_key, past_value = layer_past
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
if use_cache is True:
present = (key, value)
else:
present = None
if self.attention_mode=="tranception":
# We do not do anything on the first self.num_heads_per_kernel_size heads (kernel =1)
query_list=[query[:,:self.num_heads_per_kernel_size,:,:]]
key_list=[key[:,:self.num_heads_per_kernel_size,:,:]]
value_list=[value[:,:self.num_heads_per_kernel_size,:,:]]
for kernel_idx in range(3):
query_list.append(self.query_depthwiseconv[str(kernel_idx)](query[:,(kernel_idx+1)*self.num_heads_per_kernel_size:(kernel_idx+2)*self.num_heads_per_kernel_size,:,:]))
key_list.append(self.key_depthwiseconv[str(kernel_idx)](key[:,(kernel_idx+1)*self.num_heads_per_kernel_size:(kernel_idx+2)*self.num_heads_per_kernel_size,:,:]))
value_list.append(self.value_depthwiseconv[str(kernel_idx)](value[:,(kernel_idx+1)*self.num_heads_per_kernel_size:(kernel_idx+2)*self.num_heads_per_kernel_size,:,:]))
query=torch.cat(query_list, dim=1)
key=torch.cat(key_list, dim=1)
value=torch.cat(value_list, dim=1)
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask, alibi_bias=alibi_bias)
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
attn_output = self.c_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs # a, present, (attentions)
class TranceptionBlockMLP(nn.Module):
def __init__(self, intermediate_size, config):
super().__init__()
embed_dim = config.hidden_size
self.c_fc = Conv1D(intermediate_size, embed_dim)
self.c_proj = Conv1D(embed_dim, intermediate_size)
self.act = tranception_ACT2FN[config.activation_function]
self.dropout = nn.Dropout(config.resid_pdrop)
def forward(self, hidden_states):
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class TranceptionBlock(nn.Module):
def __init__(self, config, SDWC_kernel_size=None):
super().__init__()
hidden_size = config.hidden_size
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.attn = TranceptionBlockAttention(config, SDWC_kernel_size=SDWC_kernel_size)
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
if config.add_cross_attention:
self.crossattention = TranceptionBlockAttention(config, is_cross_attention=True, SDWC_kernel_size=SDWC_kernel_size)
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = TranceptionBlockMLP(inner_dim, config)
def forward(
self,
hidden_states,
layer_past=None,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
use_cache=False,
output_attentions=False,
alibi_bias=None,
):
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
alibi_bias=alibi_bias,
)
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
outputs = attn_outputs[1:]
# residual connection
hidden_states = attn_output + residual
if encoder_hidden_states is not None:
# add one self-attention block for cross-attention
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
"cross-attention layers by setting `config.add_cross_attention=True`"
)
residual = hidden_states
hidden_states = self.ln_cross_attn(hidden_states)
cross_attn_outputs = self.crossattention(
hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
attn_output = cross_attn_outputs[0]
# residual connection
hidden_states = residual + attn_output
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + feed_forward_hidden_states
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs # hidden_states, present, (attentions, cross_attentions)
class TranceptionModel(GPT2PreTrainedModel):
_keys_to_ignore_on_load_missing = ["attn.masked_bias"]
def __init__(self, config):
super().__init__(config)
self.embed_dim = config.hidden_size
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
self.position_embedding = config.position_embedding if hasattr(config, "position_embedding") else "learned"
if self.position_embedding=="learned":
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
self.alibi = None
elif self.position_embedding=="grouped_alibi":
maxpos = config.n_positions
attn_heads = config.n_head
self.slopes = torch.Tensor(get_slopes(attn_heads, mode=self.position_embedding))
#The softmax operation is invariant to translation, and bias functions used are always linear.
alibi = self.slopes.unsqueeze(1).unsqueeze(1) * torch.arange(maxpos).unsqueeze(0).unsqueeze(0).expand(attn_heads, -1, -1)
alibi = alibi.view(attn_heads, 1, maxpos)
self.register_buffer('alibi',alibi)
self.drop = nn.Dropout(config.embd_pdrop)
self.h = nn.ModuleList([TranceptionBlock(config) for _ in range(config.num_hidden_layers)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
self.init_weights()
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
def parallelize(self, device_map=None, num_cores=None):
self.device_map = (
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
)
device_prefix="cuda:"
assert_device_map(self.device_map, len(self.h))
self.model_parallel = True
self.first_device = "cpu" if "cpu" in self.device_map.keys() else device_prefix + str(min(self.device_map.keys()))
self.last_device = device_prefix + str(max(self.device_map.keys()))
self.wte = self.wte.to(self.first_device)
if self.position_embedding=="learned":
self.wpe = self.wpe.to(self.first_device)
for k, v in self.device_map.items():
print("k,v :"+str(k)+","+str(v))
for block in v:
cuda_device = device_prefix + str(k)
self.h[block] = self.h[block].to(cuda_device)
self.ln_f = self.ln_f.to(self.last_device)
def deparallelize(self):
self.model_parallel = False
self.device_map = None
self.first_device = "cpu"
self.last_device = "cpu"
self.wte = self.wte.to("cpu")
if self.position_embedding=="learned":
self.wpe = self.wpe.to("cpu")
for index in range(len(self.h)):
self.h[index] = self.h[index].to("cpu")
self.ln_f = self.ln_f.to("cpu")
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.wte
def set_input_embeddings(self, new_embeddings):
self.wte = new_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
for layer, heads in heads_to_prune.items():
self.h[layer].attn.prune_heads(heads)
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
# GPT2Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * -10000.0
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.add_cross_attention and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
if self.position_embedding=="learned":
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
else:
hidden_states = inputs_embeds
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure layer_past is on same device as hidden_states (might not be correct)
if layer_past is not None:
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
# Ensure that attention_mask is always on the same device as hidden_states
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if isinstance(head_mask, torch.Tensor):
head_mask = head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, use_cache, output_attentions)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
None,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
alibi_bias=self.alibi if hasattr(self, "alibi") else None
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
if self.model_parallel:
device_prefix="cuda:"
for k, v in self.device_map.items():
if i == v[-1] and device_prefix + str(k) != self.last_device:
hidden_states = hidden_states.to(device_prefix + str(k + 1))
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(*output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions, moe_loss]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class TranceptionLMHeadModel(GPT2PreTrainedModel):
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.transformer = TranceptionModel(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.config = config
self.init_weights()
self.default_model_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Model parallel
self.model_parallel = False
self.device_map = None
self.retrieval_aggregation_mode = config.retrieval_aggregation_mode if hasattr(config, "retrieval_aggregation_mode") else None
if self.retrieval_aggregation_mode is not None:
print("Model leverages both autoregressive and retrieval inference")
self.MSA_filename = config.MSA_filename if hasattr(config, "MSA_filename") else False
self.MSA_folder = '/'.join(self.MSA_filename.split(os.sep)[:-1])
self.MSA_name = self.MSA_filename.split(os.sep)[-1]
self.retrieval_inference_weight_LR = config.retrieval_inference_weight if hasattr(config, "retrieval_inference_weight") else 0.6
self.retrieval_inference_weight_RL = config.retrieval_inference_weight if hasattr(config, "retrieval_inference_weight") else 0.6
self.MSA_start=config.MSA_start
self.MSA_end=config.MSA_end
self.full_protein_length = config.full_protein_length if hasattr(config, "full_protein_length") else -1
self.MSA_log_prior = torch.log(torch.tensor(
msa_utils.get_msa_prior(
MSA_data_file=self.MSA_filename,
MSA_weight_file_name=config.MSA_weight_file_name,
retrieval_aggregation_mode=self.retrieval_aggregation_mode,
MSA_start=self.MSA_start,
MSA_end=self.MSA_end,
len_target_seq=self.full_protein_length,
vocab=config.tokenizer.get_vocab(),
verbose=False
)
).float().to(self.default_model_device))
else:
print("Model only uses autoregressive inference")
def parallelize(self, device_map=None, num_cores=None, num_pipelines=1):
self.num_pipelines=num_pipelines
self.device_map = (
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.transformer.h))
self.transformer.parallelize(self.device_map, num_cores=num_cores)
self.lm_head = self.lm_head.to(self.transformer.first_device)
self.model_parallel = True
def deparallelize(self):
self.transformer.deparallelize()
self.transformer = self.transformer.to("cpu")
self.lm_head = self.lm_head.to("cpu")
self.model_parallel = False
torch.cuda.empty_cache()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
return {
"input_ids": input_ids,
"past_key_values": past,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
"flip": kwargs.get("flip", None),
}
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
flip=None,
start_slice=None,
end_slice=None,
mutated_sequence=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = transformer_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.transformer.first_device)
hidden_states = hidden_states.to(self.lm_head.weight.device)
self.MSA_log_prior = self.MSA_log_prior.to(self.lm_head.weight.device)
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
if self.retrieval_aggregation_mode is not None:
batch_size = input_ids.size(0)
if self.retrieval_aggregation_mode=="aggregate_indel":
assert batch_size==1, "Aggregate indel is only supported for batch size of 1"
truncated_sequence_text = mutated_sequence[0][start_slice[0]:end_slice[0]]
if len(truncated_sequence_text)!=shift_logits.shape[1]-1: # shift_logits only has one extra token compared to truncated_sequence_text (the BOS token)
print("Tokenization error -- seq length: {} and shift_logits length - 1 : {}".format(len(mutated_sequence),shift_logits.shape[1]-1))
MSA_log_prior, MSA_start, MSA_end = msa_utils.update_retrieved_MSA_log_prior_indel(self, self.MSA_log_prior, self.MSA_start, self.MSA_end, mutated_sequence[0])
elif self.retrieval_aggregation_mode=="aggregate_substitution":
MSA_log_prior=self.MSA_log_prior
MSA_start=self.MSA_start
MSA_end=self.MSA_end
shift_log_probas = torch.log_softmax(shift_logits,dim=-1)
fused_shift_log_probas = shift_log_probas.clone()
if flip is None:
flip = torch.zeros(batch_size).to(fused_shift_log_probas.device)
flip = flip > 0
for seq_index in range(batch_size):
min_prior_slice = max(start_slice[seq_index], MSA_start)
max_prior_slice = min(end_slice[seq_index], MSA_end)
if max_prior_slice <= min_prior_slice:
print("Non overlapping region detected: min_prior_slice {} and max_prior_slice {}".format(min_prior_slice,max_prior_slice))
continue
slice_prior = MSA_log_prior[min_prior_slice:max_prior_slice,:].to(fused_shift_log_probas.device)
if flip[seq_index]:
slice_prior = torch.flip(slice_prior,dims=(0,))
min_logits_slice = max(0,end_slice[seq_index]-MSA_end)
max_logits_slice = min_logits_slice + (max_prior_slice-min_prior_slice)
fused_shift_log_probas[seq_index,min_logits_slice:max_logits_slice,:] = (1-self.retrieval_inference_weight_RL)*shift_log_probas[seq_index,min_logits_slice:max_logits_slice,:] + self.retrieval_inference_weight_RL*slice_prior
else:
min_logits_slice = max(0, MSA_start-start_slice[seq_index])
max_logits_slice = min_logits_slice + (max_prior_slice-min_prior_slice)
fused_shift_log_probas[seq_index,min_logits_slice:max_logits_slice,:] = (1-self.retrieval_inference_weight_LR)*shift_log_probas[seq_index,min_logits_slice:max_logits_slice,:] + self.retrieval_inference_weight_LR*slice_prior
if self.retrieval_aggregation_mode=="aggregate_indel":
try:
# If a given residue colume is an added zero-column, then we overwrite prior fusion and only predict based on the autoregressive transformer inference mode.
inserted_retrieval_positions = [True if slice_prior[i].sum()==0 else False for i in range(len(slice_prior))]+[True] #Last True is for the end of sentence token
fused_shift_log_probas[:,inserted_retrieval_positions,:]=shift_log_probas[:,inserted_retrieval_positions,:]
except:
print("Error when adding zero column(s) to account for insertion mutations.")
loss_fct = NLLLoss(reduction='none')
loss = loss_fct(input=fused_shift_log_probas.view(-1, fused_shift_log_probas.size(-1)), target=shift_labels.view(-1)).view(fused_shift_log_probas.shape[0],fused_shift_log_probas.shape[1])
mask = attention_mask[..., 1:].float()
mask[mask==0]=float('nan')
loss *= mask
loss = nanmean(loss, dim=1).mean()
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
fused_shift_log_probas = None
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return TranceptionCausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
fused_shift_log_probas=fused_shift_log_probas
)
@staticmethod
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the :obj:`past_key_values` cache if
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
"""
return tuple(
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
for layer_past in past
)
def score_mutants(self, DMS_data, target_seq=None, scoring_mirror=True, batch_size_inference=10, num_workers=10, indel_mode=False):
"""
Method to score mutants in an input DMS file.
DMS_data: (dataframe) Dataframe containing the list of mutated sequences for scoring.
target_seq: (string) Full reference sequence (wild type) that is mutated in the DMS assay. If not None, returned scores are delta log likelihood wrt that sequence.
scoring_mirror: (bool) Whether to score mutated sequences from both directions (Left->Right and Right->Left).
batch_size_inference: (int) Batch size for scoring.
num_workers: (int) Number of workers to be used in the data loader.
indel_mode: (bool) Flag to be used when scoring insertions and deletions. Otherwise assumes substitutions.
"""
df = DMS_data.copy()
if ('mutated_sequence' not in df) and (not indel_mode): df['mutated_sequence'] = df['mutant'].apply(lambda x: scoring_utils.get_mutated_sequence(target_seq, x))
assert ('mutated_sequence' in df), "DMS file to score does not have mutated_sequence column"
#if 'mutant' not in df: df['mutant'] = df['mutated_sequence'] #if mutant not in DMS file we default to mutated_sequence
if 'DMS_score' in df: del df['DMS_score']
if 'DMS_score_bin' in df: del df['DMS_score_bin']
if target_seq is not None:
df_left_to_right_slices = scoring_utils.get_sequence_slices(df, target_seq=target_seq, model_context_len = self.config.n_ctx - 2, indel_mode=indel_mode, scoring_window=self.config.scoring_window)
else:
df_left_to_right_slices = scoring_utils.get_sequence_slices(df, target_seq=list(df['mutated_sequence'])[0], model_context_len = self.config.n_ctx - 2, indel_mode=indel_mode, scoring_window='sliding')
print("Scoring sequences from left to right")
scores_L_to_R = scoring_utils.get_tranception_scores_mutated_sequences(model=self, mutated_sequence_df=df_left_to_right_slices, batch_size_inference=batch_size_inference, score_var_name='avg_score_L_to_R', target_seq=target_seq, num_workers=num_workers, indel_mode=indel_mode)
if scoring_mirror:
print("Scoring sequences from right to left")
df_right_to_left_slices = df_left_to_right_slices.copy()
df_right_to_left_slices['sliced_mutated_sequence'] = df_right_to_left_slices['sliced_mutated_sequence'].apply(lambda x: x[::-1])
scores_R_to_L = scoring_utils.get_tranception_scores_mutated_sequences(model=self, mutated_sequence_df=df_right_to_left_slices, batch_size_inference=batch_size_inference, score_var_name='avg_score_R_to_L', target_seq=target_seq, num_workers=num_workers, reverse=True, indel_mode=indel_mode)
all_scores = pd.merge(scores_L_to_R, scores_R_to_L, on='mutated_sequence', how='left', suffixes=('','_R_to_L'))
all_scores['avg_score'] = (all_scores['avg_score_L_to_R'] + all_scores['avg_score_R_to_L']) / 2.0
else:
all_scores = scores_L_to_R
all_scores['avg_score'] = all_scores['avg_score_L_to_R']
#By design "get_tranception_scores_mutated_sequences" drops the WT from the output. We add it back if that was one of the sequences to score in the DMS (score=0 by definition)
if target_seq in DMS_data.mutated_sequence.values:
print("LEMON")
if scoring_mirror:
wt_row = pd.DataFrame([[target_seq,0,0,0]], columns=['mutated_sequence','avg_score_L_to_R','avg_score_R_to_L','avg_score'])
else:
wt_row = pd.DataFrame([[target_seq,0,0]], columns=['mutated_sequence','avg_score_L_to_R','avg_score'])
all_scores = pd.concat([all_scores,wt_row], ignore_index=True)
return all_scores
def encode_batch(self, protein_sequence, sequence_name="sliced_mutated_sequence"):
"""
Method to process an input AA sequence batch (protein_sequence) and return a tokenized sequence (via the tokenizer associated to the model).
"""
protein_sequence[sequence_name] = scoring_utils.sequence_replace(sequences=protein_sequence[sequence_name], char_to_replace='X', char_replacements='ACDEFGHIKLMNPQRSTVWY')
protein_sequence[sequence_name] = scoring_utils.sequence_replace(sequences=protein_sequence[sequence_name], char_to_replace='B', char_replacements='DN')
protein_sequence[sequence_name] = scoring_utils.sequence_replace(sequences=protein_sequence[sequence_name], char_to_replace='J', char_replacements='IL')
protein_sequence[sequence_name] = scoring_utils.sequence_replace(sequences=protein_sequence[sequence_name], char_to_replace='Z', char_replacements='EQ')
return self.config.tokenizer(list(protein_sequence[sequence_name]), add_special_tokens=True, truncation=True, padding=True, max_length=self.config.n_ctx)