Parthebhan commited on
Commit
abbb9cd
·
verified ·
1 Parent(s): 111a05b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -11
app.py CHANGED
@@ -1,25 +1,19 @@
1
  import gradio as gr
2
  import tensorflow as tf
 
3
 
4
  # Load the pickled model
5
  model = tf.keras.models.load_model("census.h5")
6
 
7
  # Define the function for making predictions
8
  def salarybracket(age, workclass, education, education_num, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
9
- inputs = [[age, workclass, education, education_num, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country]]
10
  prediction = model.predict(inputs)
11
- prediction_value = prediction[0]
12
-
13
- # Categorize prediction_value
14
- if prediction_value == 0:
15
- result = "Income_bracket lesserthan or equal to 50K "
16
- else:
17
- result = "Income_bracket greater than to 50K"
18
-
19
  return f"Income_bracket Prediction: {prediction_value} \n\nResult: {result}"
20
 
21
-
22
-
23
  # Create the Gradio interface
24
  salarybracket_ga = gr.Interface(fn=salarybracket,
25
  inputs = [
 
1
  import gradio as gr
2
  import tensorflow as tf
3
+ import numpy as np
4
 
5
  # Load the pickled model
6
  model = tf.keras.models.load_model("census.h5")
7
 
8
  # Define the function for making predictions
9
  def salarybracket(age, workclass, education, education_num, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
10
+ inputs = np.array([[age, workclass, education, education_num, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country]])
11
  prediction = model.predict(inputs)
12
+ prediction_value = prediction[0][0] # Assuming the prediction is a scalar
13
+ result = "Income_bracket lesser than or equal to 50K" if prediction_value <= 0.5 else "Income_bracket greater than 50K"
 
 
 
 
 
 
14
  return f"Income_bracket Prediction: {prediction_value} \n\nResult: {result}"
15
 
16
+
 
17
  # Create the Gradio interface
18
  salarybracket_ga = gr.Interface(fn=salarybracket,
19
  inputs = [